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Abstract. To every Q-irreducible representation r of a finite group H, there
corresponds a simple factor A of Q[H] with an involution 7. To this pair (A, 1), we
associate an arithmetic group €2 consisting of all (2g — 2) x (2¢g — 2) matrices over a
natural order D of A°? which preserve a natural skew-Hermitian sesquilinear form
on A?972, We show that if H is generated by less than g elements, then € is a virtual
quotient of the mapping class group Mod(X,), i.e. a finite index subgroup of € is
a quotient of a finite index subgroup of Mod(X,). This shows that Mod(X,) has a
rich family of arithmetic quotients (and “Torelli subgroups”) for which the classical
quotient Sp(2g,7Z) is just a first case in a list, the case corresponding to the trivial
group H and the trivial representation. Other pairs of H and r give rise to many
new arithmetic quotients of Mod(3,) which are defined over various (subfields of)
cyclotomic fields and are of type Sp(2m), SO(2m, 2m), and SU(m, m) for arbitrarily
large m.

1 Introduction

Let ¥ = X, be a closed surface of genus g > 2 and Mod(X) the mapping class group of
32, which is the group of orientation-preserving homeomorphisms of > modulo those
isotopic to the identity. It is well-known that there is an epimorphism from Mod ()
onto the arithmetic group Sp(2g, Z). The purpose of this paper is to show that many
more arithmetic groups are quotients of Mod(X). Specifically, for every pair (H,r),
where H is a finite group minimally generated by d(H) < ¢ elements and r is a
nontrivial irreducible Q-representation of H, we associate a finite index subgroup
'y of Mod(X), an arithmetic group Qp, (whose exact structure will be described
below) and a homomorphism pg, : 'y — Qp, whose image is of finite index in
Qp,. We call such a homomorphism a virtual epimorphism of Mod(X) onto Qg
(Of course, via the induced representation, every virtual homomorphism also gives a
representation of the full group Mod(X), but it is more natural to study the original
representation). The homomorphism Mod(3) — Sp(2¢,Z) is the special case where
H is the trivial group. The homomorphism from a finite index subgroup of Mod(3,)
to Sp(2(g — 1), Z) studied in [LM12] and [MS13] is the one corresponding to the case
H = 7/27 and r the nontrivial one-dimensional representation. The first to show
that Mod(X) has a large collection of virtual arithmetic quotients beside Sp(2¢,Z)
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was Looijenga [L97] who analyzed the case where H is abelian. In [L97], [LM12],
[MS13], all representations have degree bounded by 2¢g and the target arithmetic
groups are limited, while we obtain irreducible representations of arbitrarily large
degree and a wider range of target arithmetic groups.

The homomorphism p is obtained from the action of Mod(X) (or more precisely,
of a finite index subgroup of Mod (X)) on the first integral homology group of a

finite Galois cover of ¥ corresponding to H; equivalently, on R dof R/[R, R] where
R is a finite index normal subgroup of T, = m(3,) with Ty/R = H. This action
on the homology of finite covers was also studied by Koberda, but with the goal of
showing that one can determine whether a mapping class is periodic, reducible or
pseudo-Anosov by considering enough finite covers [K12].

Our work is also related to that of Grunewald and Lubotzky [GL09] whose results
we will use in our proofs. Recall that by the Dehn-Nielsen-Baer Theorem, Mod(3,)
is naturally isomorphic to an index 2 subgroup of Out(7}), the outer automorphism
group of Ty = m1(X,) (Allowing orientation-reversing homeomorphisms would give
all of Out(Ty)). In [GL09], Grunewald and Lubotzky studied the analogous problem
where Out(Ty) is replaced by Aut(F,) the automorphism group of F,, the free
group of rank n. While there are a few similarities between the papers, the theory
developed in the current paper requires several advances (which we will discuss), and
the main techniques of proof in [GL09], as far as we can determine, are unusable
in this case. The difference is nicely illustrated already in the easiest case; while
the fact that 7 : Aut(F,) — GL(n,Z) is surjective is easy to establish, the fact
that Mod(3,) — Sp(2g,Z) is surjective is a classical but nontrivial result due to
Burkhardt and Clebsch-Gordan [B89].

We begin by describing the general procedure for obtaining representations to
arithmetic groups from Mod(3, %), the mapping class group fixing the point * € ¥,
up to isotopy fixing *x. We will denote these representations also by p. A short argu-
ment (Section 8.2) shows that the representations descend (virtually) to Mod(%,).
Via the natural map Mod(3g, *) — Aut(7},), we can identify Mod(X, ) with its
image, which is of index 2 and which we denote by Aut(7,)". Let p: T, — H be a
surjective homomorphism with kernel R onto a finite group H, and let 'y, = {y €
Aut(Ty)*|p o~y = p}. Then, I'yy,, is a finite index subgroup of Aut(7,)" which pre-
serves R and acts on R as a Z[H]-module. Thus, I',, acts by Q[H]-automorphisms
on R = R ®z Q and we obtain a representation pap : THp — Ath[H](R) (See
Section 6 for a discussion of these and some other properties of pg ).

By an analogue of a classical result of Gaschiitz, the module R can be identified

precisely. Note that here, and elsewhere unless stated otherwise, Q is considered to
be the trivial Q[H]-module.

ProprosITION 1.1. Let T' = T, be the fundamental group of a surface X of genus
g > 2. Let R be a finite index normal subgroup of T and H = T/R. Then R =
Q ®z (R/[R, R)) is isomorphic as a Q[H|-module to Q* @ Q[H|?92.
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This result was proved in [CW34]. We give an alternate proof in Section 2. The
group ring Q[H| decomposes as a direct sum of simple algebras Q[H] = Q® @le A;
where each A; is the ring of m; xm; matrices over a division algebra D; with a number
field L;/Q as its center. Consequently, R~ Q% @@le A,?g _2, and so we can project
to representations ppp;: I'rp — Aut Ai(A?g 72). The action on Q% is the standard
symplectic representation.

Up to now, the above procedure follows that of [GL09] with the important ex-
ception that Grunewald and Lubotzky use the actual theorem of Gaschiitz in place
of Proposition 1.1. Via such representations, they show that Aut(F},) virtually sur-
jects onto a rich class of arithmetic groups, including SLy,,—1)(Z) and SLy(,—1y(Om)
where ¢ ranges over all positive integers, m ranges over all integers >3, and O,, is
the ring of integers in the number field generated by Q and a primitive mth root of
unity.

What makes the surface case much more difficult (and interesting) is the fact
that in our case R is equipped with a Q[H]-valued skew-Hermitian sesquilinear form
(—,—) on R with respect to the standard involution 7 on Q[H] which is defined
by 7(h) = h~!. This form can be defined in terms of the group action H and the
natural symplectic structure on R coming from its identification with the rational
first homology of the covering surface (see Section 3 for a detailed discussion of this

form). As we will see in Section 6, pp p(I'rp) preserves this form. The sesquilinear
form descends to a nondegenerate A;-valued form on each factor M; = A?g _2, and
the image of pgrp; lies in Aut g, (A7972, (=, —)).

On account of this, we obtain an even richer class of arithmetic quotients. We
illustrate it here by some simple to state examples obtained by appropriate choices
of H and p. See Section 9 for more. We denote by (, the primitive nth root of
unity, and by Q(¢,)* we denote the index 2 subfield of Q((,) which is fixed by
the order 2 Galois automorphism of Q(¢,) mapping ¢, to ¢, *. By SU(m,m, ), we
denote the subgroup of SLa,, (O) preserving the Hermitian form of signature (m, m),

namely
m — —
(@1, s b1, b)) (dhs g, B b)) = (aia] — bib))
i=1
where O is the ring of integers in Q((,,) and ~ is the order 2 automorphism of Q(¢,,)
just described.

Theorem 1.2. For a fixed g > 2, there are virtual epimorphisms of Mod(%,)
onto the following arithmetic groups:

(a) Sp(2m(g — 1),Z) for all m € N,

(b) for all m € N and n > 3, the group Sp(4m(g — 1),O) where O is the ring of
integers in Q(¢,)T,

(c) for all m € N and n > 3, the group SU(m(g — 1), m(g — 1), O) where O is the
ring of integers in Q((,),
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(d) for allm € N and n > 3, an arithmetic group of type SO(2m(g—1),2m(g—1))
(whose precise description will be given in Section 9).

Theorem 1.3. Let L be an arbitrary subfield of a finite cyclotomic extension of
Q and O the ring of integers of L. Then there is some sy, and Ny, such that for every
g > Ny, and every m € N, there is a virtual epimorphism of Mod(%,) onto

e Sp(2msr (g —1),0) if L is a totally real field,
o SU(msr(g—1),msr(g —1),0) if L is a totally imaginary field.

Note that any subfield of a cyclotomic field is necessarily either totally real or
totally imaginary (see Lemma 4.2).

Taking g = 2 and m = 1 in (a) of Theorem 1.2, we obtain the following corollary
which has been proven previously by Korkmaz by a different method [K03] and by
McCarthy via similar techniques [MO01].

Corollary 1.4. There is a virtual epimorphism from Mod(%2) onto Sp(2,Z) =
SL(2,Z). In particular, there is a virtual epimorphism of Mod(Xs) onto a free group,
and hence Mod(3s) is large.

We also deduce the main result of [MR12] in Section 9.7.

Corollary 1.5. For every genus g > 2 and every finite group G, there is a finite
index subgroup of Mod(X,) which surjects onto G.

We now explain the main technical result of the paper. The standard involution
7 of Q[H], defined above, descends to an involution on each simple factor A; of Q[H]
(see Lemma 3.2). Let K; = LT be the subfield of the center L; fixed by 7, and let
9O; be the image of Z[H| in A; which is an order in A;. Let Gy ; be the Kj-defined
algebraic group Auty, (A?g_g, (—,—)), and let g}ﬁ be those elements of reduced
norm 1 over L; (see Section 3.4 for the definition of reduced norm). Let Q}{Z(Dz) be
the arithmetic subgroup g}ﬁ N Autp, (0?9_2). Our main result says that, under a
suitable condition, the image of Tz, contains a finite index subgroup of Gy ;(9;).
Namely, the suitable condition is that p be ¢-redundant, which means that p factors
through a surjective map ¢ : T, — F, where F} is the rank g free group and the
induced map p' : F; — H is redundant, i.e. p’ contains a free generator in its kernel.

Theorem 1.6. Suppose g > 3 and p : Ty, — H is ¢-redundant. Then, for pyp ;.
I'hp, g}{Z(Dz) as defined above, pyp,i(I'n ) is commensurable with Q}LIZ(D@)

It is the structure of (A?g =2 (—,—)) which ultimately determines Q}Li(Di), and
this structure is intimately related to the representation theory of the finite group
H. The structure is determined by the pair (A;, 7|4,), and the simple factors A;
of Q[H] are in natural one-to-one correspondence with the nontrivial irreducible
Q-representations 7; of H (and the factor Q of Q[H] corresponds to the trivial
representation). We can also extract information about the structure (Theorem 1.7
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below) by extending scalars to get R-algebras and C-representations as follows. Let
n? = dimg, (A4;). As we will see later (Proposition 4.3), K; is a totally real field. As
A; is simple, so are A; ®r, C and A; @k, R; consequently, A; @7, C = Mat,,, (C),
and A; ®k, R is isomorphic to one of Mat,, (R), Mat,, (C), or Mat,,, /o(H) where H
denotes the Hamiltonian quaternions. Note that the projection Q[H] — A; induces
a representation H — (A; ®r, C)* which by the isomorphism A; ®r, C = Mat,, (C)
gives an irreducible C-representation r; ¢ : H — GL,, (C).

After extending scalars to C, the group Gg; “becomes” one of the classical alge-
braic groups over C. The following theorem describes the structure after extending
scalars and summarizes, essentially, how we obtain the different types of arithmetic
groups (Sp, O,U) in Theorem 1.2 (For definitions of first/second kind and symplec-
tic/orthogonal type, see Section 3.3).

Theorem 1.7.  The group Gy ; is the group of K;-points of a K;-defined complex
algebraic group G with the additional property that

® G = Sp(gg_2)n, (C) & 1 c(H) preserves a nondegenerate symmetric bilinear
form < A; @k, R = Mat,, (R) < 7|4, is of first kind and orthogonal type.

e G = O(gg-2)n,(C) & rc(H) preserves a nondegenerate alternating bilinear
form < A; @, R = Mat,,, o(H) < 7|4, is of first kind and symplectic type.

e G = GL(3g-9)p,(C) < 7 c(H) preserves no nonzero bilinear form < A; @k, R =
Mat,,, (C) < 7|4, is of second kind.

Theorem 1.6 and its proof show that we have the following “procedure” to obtain
a rich collection of arithmetic quotients of Mod(X,). We present this procedure in
the form of a theorem. Note that the homomorphism py 4 below is explicit and
constructive.

Theorem 1.8. Let H be a finite group with d(H) < g generators and let A be
a nontrivial simple component of Q[H]. Let 7 be the involution on A induced by
the standard one of Q[H], let L be the center of A, and let K = L7 be the T-
fixed subfield. Set M = A%9=2 with free basis x1, ... s Tg—1,Y1, -+, Yg—1, and endow
M with the skew-Hermitian sesquilinear form satisfying (x;,vy;) = 0ij, (yi, ;) =
—0ij, (xi, xj) = 0, and (y;,y;) = 0. Set G to be the K-algebraic group of the A-
automorphisms of (M, {—,—)) and G' to be its elements of reduced norm 1 over L.
Set Qa4 = GHO) = G'NAuto(9%2) where O is the order in A which is the image
of Z|H|. Then, there is a finite index subgroup I'y < Mod(X,) and a homomorphism
pr,A 'y — Qg 4 whose image is of finite index.

Note that since there is a bijection between nontrivial simple components A of
Q[H] and nontrivial irreducible Q-representations r of H, we could, with appropriate
rewording, replace A with r in the above theorem. Thus, if A corresponds to r, then
payr = pa,A and Qp, = Qp o are respectively the representation and arithmetic
group promised at the beginning. Note, in addition, that in Theorem 1.8, we did
not reference the ¢-redundant homomorphism p : 7, — H. The homomorphism p
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does depend on the choice of p, but under certain conditions (such as g > d(H)) we
know that different choices of p lead to representations p which are equivalent in a
natural way. In Section 8.4, we discuss the notion of equivalence of representations
p and when they are known to be equivalent.

Theorem 1.2 is deduced from Theorem 1.8 by making special choices of finite
groups H and simple components A of Q[H] and then analyzing the resulting arith-
metic groups, in some cases using Theorem 1.7 (see Section 9 for the corresponding
irreducible representations r). For (a), we use H = Sym(m + 1) and A = Mat,,,(Q).
For (b) and m > 3, we use H = Alt(m + 1) x Dih(2n) where Dih(2n) is the dihedral
group of order 2n, and A = Mat,, (L) where L is the field Q(¢,)™. For (c) and m > 2,
we use H = Sym(m + 1) x Z/nZ and A = Mat,,(Q({,)). For (d) and m > 3, we use
H = Alt(m+1) x Dic(4n) where Dic(4n) is the dicyclic group of order 4n (definition
in Section 9) and A = Mat,,(D) where D is the quaternion algebra

p={(5 ) evan@ichios e}

For smaller m in cases (b),(c),(d), see Section 9 for the corresponding H. Theorem
1.3 is also deduced from Theorem 1.8, and the fact that, for such L, the algebra
Mats, (L) appears as a simple factor of Q[H] for some finite group H and some sy,.
The reader may notice that the group G obtained is always of type A,,C,, or D,
but never B,,, G, Fy, Eg, E'; or Eg.

The above mentioned results open a lot of questions. They show that the classical
Torelli group of Mod(X) is just a first in a list of countably many “generalized
Torelli subgroups” —ker(pp ) as above. Are these subgroups (or any of them) finitely
generated? Note that these are very different from the “higher Torelli groups” (or
equivalently, groups in the Johnson filtration) obtained from nilpotent quotients of
Ty; in fact, for any group J in the Johnson filtration and any Tp, = ker(ppy,) for
H nontrivial, the product 3T, is of finite index in Mod(X) (see Section 8.6).

Our theorem can be useful also toward solving the long-standing problem whether
Mod(%y), for g > 3, can virtually surject onto Z. In [PW13], Putman and Wieland
showed, roughly speaking, that if pg,(I' ) has no finite orbits for all p and H (a
collection for which ker(p) is cofinal would suffice), then the mapping class group
(for a surface of genus 1 greater) does not virtually surject to Z. Theorem 1.6 easily
implies this condition for ¢-redundant p. This is just a step in this direction since the
subgroups ker(p) for all such p do not form a cofinal family (To get the conclusion
that Mod(X) does not virtually surject onto Z, one must prove a similar result
for covers of a surface with one boundary component. See [PW13] for the precise
formulation).

The key idea for proving Theorem 1.6 is that the handlebody subgroup of the
mapping class group behaves like a maximal parabolic subgroup of a semisimple
Lie group. Let us elaborate. Along the way, we will indicate where each step in the
argument is proved. As explained above, we are getting a representation pg; of
Mod(X), or to be more precise a finite index subgroup of it, into G ;.
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Let 3 = OH be an identification inducing ¢ : Ty — m(H) = F, where H is
a genus ¢ handlebody. From [J69, Theorem 5.2], it follows that all surjective ho-
momorphisms ¢ : T, — Fj arise this way. We analyze first the image of Map(H),
the handlebody subgroup of Mod(X) for a handlebody H with boundary ¥ (More
accurately, we will study Map(H, %), the handlebody group with a fixed point). This
is the subgroup of Mod(X) consisting of all isotopy classes containing homeomor-
phisms which extend to H. This important subgroup of Mod(X) has been actively
studied in recent years—see for example [HH12,HH13]. Via its action on the funda-
mental group of H, it is mapped onto Out(F}), the outer automorphism group of the
free group on g generators. Following carefully the definitions, one sees that when
p: Ty — H is ¢-redundant, pg,(Map(H)) acts on a submodule of M; in precisely
the same way as p(Out(Fy)) in [GLO9] (Section 6). We can therefore appeal to the
results of [GL09] to deduce that pg,;(Map(H)) contains an arithmetic subgroup
of the Levi factor £ of a suitable maximal parabolic subgroup P = LN of Gy ;
(Section 6).

Moreover, we use again the ¢-redundant assumption to show that the image of
I'mp < Mod(Xy, ) contains nontrivial unipotent elements in the unipotent radical
NT of P as well as of N7, its opposite subgroup (upper triangular versus lower
triangular). At this point, we use both results as well as the fact that £ acts ir-
reducibly on Nt and on N, to deduce that the image of Mod(X) contains finite
index subgroups of UT (D) =UTNG(O) and U~ (O) =U NG(O) where U and U~
are opposite maximal unipotent subgroups of Gg ; (Section 7). Now, we can appeal
to the result of Raghunathan [R92] (see also Venkataramana [V94]) that two such
subgroups generate a finite index subgroup of Q}M(D) and Theorem 1.6 is deduced
(Section 8).

The paper is organized as follows. In Section 2, we prove an analogue of Gaschiitz’s
Theorem for surface groups, and in Section 3, we develop what we call “Symplec-
tic Gaschiitz theory”, i.e. identifying the structure of R = R ®7 Q, not merely as
a Q[H]-module but also as a module with a skew-Hermitian form over Q[H| — an
algebra with involution. We relate its structure to the representation theory of the
finite group H. In Section 4, we elaborate on this connection. Most of the material
in Section 4 is likely known to experts on simple algebras, but we chose to include
a quick presentation which seems not to be available in this form. This material is
useful when one comes to producing examples of arithmetic quotients out of finite
groups H and their representations. But the reader can skip this section on a first
reading, going right away to Section 5.

In Section 5, we describe a submodule of R isomorphic to Q[H]? which leads (in
Section 7) to an identification of two unipotent elements in pgr ;i (I'm ), and we prove
that the sesquilinear form (—, —) on M; = A?g_2 has an isotropic submodule M/
isomorphic to AY ~! The parabolic subgroup P mentioned above consists precisely
of those elements of Gy ; preserving M. Some of the content of Sections 6, 7, and 8
have been indicated above; additionally, Section 6 establishes the basic properties of
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pH.p, and in Section 8, we finish the proof of Theorem 1.8. We end in Section 9 with
proofs of the remaining results claimed in the introduction and some discussion of
the arithmetic groups Qg 4 as (H, A) ranges over all pairs of finite groups H and
simple components A of Q[H].

1.1 Index of notation. For the convenience of the reader, we collect here some
of the more important notation that is consistent throughout the paper.

Mod(X): the mapping class group of the closed surface ¥

Mod (%, %): the mapping class group of the closed surface ¥ fixing the point x*

g: genus of the surface

H: a finite group

r,r;: an irreducible Q-representation of H

A, A;: a simple Q-algebra (almost always denoting a component of Q[H])

M, M;: modules over A, A; (almost always denoting 42972 A?g _2)

L, L;: the center of A, A;

7: the canonical involution on Q[H| and each A, A; (see Lemma 3.2.)

K, K;: the 7-fixed subfield of L, L;

(—, —): the sesquilinear pairing on A?Q_Q (or R; see Section 3.1.)

Gui: the algebraic group Auta, (A7 2 (— —)) (defined over K;)

g}q ;: the elements in Gy ; of reduced norm 1

9,9;: an order in A, A; which is the image of Z[H]

Q,Qp,, U 4: the arithmetic group consisting of O, O; points of g},ﬂ. (where A = A;
and r is the representation Q[H| — A).

Ty =m(3g)

p: 1T, — H: some surjective homomorphism
R: =ker(p)

R = R/[R,R]

R =R®Q

Prp ={y € Aut(Ty)" =Mod(E, x)|poy = p} )
pap Uy — Autgpy)(R) : the representation for the induced action of 'y, on R
PHpi  LHp — g}u: the map pp , followed by the projection onto the action of the

ith isotypic component of R

I'f: a finite index subgroup of Mod(X) (of some relation to I' p; see Section 8.2.)

PHr pH,A: alternative names for the representation I'y — Qpy 4 = Qg where r :
Q[H] — A is an irreducible representation.

H,Hy: the genus g handlebody

Map(H), Map(H, *) : the mapping class group of the handlebody (also called the
handlebody group) respectively without and with a fixed point.

F,: the free group of rank g

¢ Ty — Fy: a surjective homomorphism

p' : Fy — H: asurjective homomorphism satisfying p’o¢ = p (when p is ¢-redundant)

S = ker(p)
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S = S/[S, 8]

& _g

P : a maximal parabolic in Gg;

L: a Levi factor of Grr;

NT: the unipotent radical of P

N~: the opposite subgroup of N’

UT,U™: opposite maximal unipotent radicals of Gy ;

2 A Theorem of Gaschiitz and a Generalization to Surface Groups

Suppose we have an exact sequence of groups
l1-R-TEH -1

where T is the fundamental group of a closed orientable surface of genus g and H
is a finite group. The action of T on R = R/[R, R] by conjugation descends to an
action of H. Thus, R has the structure of a Z[H] module. In this section, we prove
Proposition 1.1 from the introduction. We recall the proposition here.

Proposition 1.1. Let T' = T, be the fundamental group of a surface ¥ of genus
g > 2. Let R be a finite index normal subgroup of T and H = T/R. Then R =
Q ®z (R/[R, R]) is isomorphic as a Q[H]-module to Q* & Q[H]?*9~2.

As mentioned in the introduction, this is a known result due to Chevalley—Weil.
We adopt a topological viewpoint to give an alternative proof of Proposition 1.1, and
we begin by translating algebraic objects into topological ones. For any normal finite
index subgroup R < T, there is a corresponding finite index regular cover Y- Y

such that the image Wl(Z:l) — m1(¥) is precisely R. Using this, one can identify
Hy(3,Z) with R and Hy(¥,Q) = R. The group H =T/ R acts on the cover by deck
transformations and thereby induces an action of H on H; (X, Q). The isomorphism

Hi (2, Q) = R is an isomorphism of Q[H]-modules.

2.1 Gaschiitz’s Theorem. In the case where T is replaced by a free group F,
the description of R is a classical result of Gaschiitz. Since we require its use in later
sections, we present Gaschiitz’s theorem. We also provide a new topological proof of
the theorem which we then adapt for the analagous theorem for surfaces.

Theorem 2.1 (Gaschiitz). Suppose 1 — R — F, % H — 1 is a short exact
sequence where I, is the free group on n generators and H is a finite group. Let
R = R/[R,R] and R = R ®z Q. Then, there is a Q[H]-module isomorphism:

R=QH]"'sQ.

Proof. To prove this, let us first identify F;, with the fundamental group of an n-
petalled rose Y with oriented edges where each edge is one of the free generators z;
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of F,. Let Y — Y be the cover corresponding to R. Lift the orientation of ¥ to an
orientation of the edges of Y. N

We compute Hy(Y, Q) via cellular homology. Let C;(Y,Q) denote formal sums
with Q coefficients of i-cells of Y. Since there are no 2-cells, Hy (Y, Q) is the kernel
of the boundary map J;. Pick some vertex * of the graph Y, and let eqy,...,e, be
the (oriented) edges going out from % where e; covers the edge corresponding to the
generator z; of F,. The group H acts freely on the orbit of e;, the H-orbit of e; and
ej are disjoint if ¢ # j, and the H-orbits of all the e; cover Y. Thus, we have an
internal Q[H|-module direct sum decomposition of the space of 1-chains

C1(Y,Q) = P QIH] - e; = Q[H]",
=1

Furthermore, Co(Y,Q) = Q[H] - # = Q[H]. The boundary map is a Q[H]-
homomorphism, and furthermore, 0;(e;) = (h; — 1) - * where h; = p(x;).

The above argument shows that the image of 0; lies in b - % where § is the
augmentation ideal; i.e. b is the kernel of the augmentation map € : Q[H] — Q
defined by >, cpyanh +— > g an. Since we know that dimg(Ho(Y,Q)) = 1, the
image of 0; must be the entire augmentation ideal. Semi-simplicity of Q[H]-modules
implies

QH]"=C1(Y,Q) =H(Y,Q) & b.
Note that € is a Q[H]-module homomorphism from Q[H] to the trivial module so
QIH] = Q&b and H,(Y,Q) = Q[H]"! & Q.

2.2 Theorem for surface groups. We now prove Proposition 1.1. Let Y7 be
the 2g-petalled rose with oriented loops, and label the loops by a;,b; for i =1,...g.
Let Y be the 2-dimensional CW-complex obtained by gluing a 2-cell along its bound-
ary to the path [ay,bi][ag, bo]. .. [ag,by] in Y1 where [z,y] = zyz~ly~L. It is well
known that Y is a closed, genus g surface. Let Y be the cover corresponding to the
subgroup R < T = m1(Y). N

As in the above proof, 9;(C1(Y,Q)) = b still holds. However, in this case,
02(C2(Y,Q)) is nontrivial, so we must determine it to compute Hy (Y, Q). The group
H acts freely and transitively on the 2-cells of Y, so C2(Y,Q) = Q[H] - c2 = Q[H]
where ¢y is some oriented 2-cell of Y. By semi-simplicity then, finding 92(Ca (Y, Q))
is equivalent to determining ker(d2) which, since there are no 3-cells, is Ha(Y, Q).
Since Y is a surface, Ha(Y,Q) = Q as a Q-vector space. However, we must ver-
ify that the Q[H]-module structure is trivial. The action of h € H on Ha(Y,Q) is
multiplication by the degree of the map, and since H acts by orientation-preserving
homeomorphisms, that degree is necessarily 1.

Thus, the image of 05 is isomorphic to h, and by semi-simplicity of Q[H]-modules,

Q[H]¥ = C(Y,Q) = Hy(Y,Q) @ h?,

and the desired result follows. O
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3 Symplectic Gaschiitz Theory

Let us fix R < T, a finite index normal subgroup, and set H = T/R and R =
(R/[R, R]) ®z Q as above. For surface groups T, the Q[H]-module R has a richer
structure than in the analogous situation for free groups. Specifically, R admits a
natural Q[H|-valued sesquilinear form (—, —). In this section, we describe the form,
and we exhibit a decomposition of the pair (R, (—, —)) into factors. Later in Section
6, we will see that this structure is preserved by the action of pg ,(I'r,) (Lemma

6.2).

3.1 The sesquilinear pairing on R. We first define a few necessary terms.
An anti-homomorphism 7 : A — A of a Q-algebra is a Q-linear map of A such that
T(araz) = 7(az)7(a1) for all aj,as € A; furthermore 7 is an involution if 72 = Id.
Suppose M is an A-module. A form (—,—) : M x M — A is sesquilinear (relative
to the involution 7) if it is Q-bilinear and for any r,s € A, m,m’' € M

(rm, sm’) = r{m,m')7(s).

The form furthermore is skew-Hermitian if (m, m') = —7((m’/, m)) and nondegener-
ate if for all nonzero m € M, there is an m’ € M such that (m,m’) # 0.

Any group ring Q[H| admits a canonical involution 7 defined by setting 7(h) =
h=! for h € H and extending linearly. Recall that R is naturally identified with
Hl(f),@) which has an alternating intersection form, and we denote this form by
(—, —)sp- In a similar way to [R34], [H83, Section 3], we define the following Q[H]-
valued form on R:

<$7y> = Z@j?hy)Sph- (1)

heH

LEMMA 3.1. The form (—, —) is nondegenerate, sesquilinear with respect to T, and
skew-Hermitian.

Proof. Nondegeneracy follows from the nondegeneracy of the symplectic form. It can
be readily checked that sesquilinearity follows from the fact that H preserves the
symplectic form. The action of H preserves the symplectic form as it is equivalent
to the action of deck transformations on H; (3, Q) and deck transformations act by
orientation preserving homeomorphisms. The form (—, —) is skew-Hermitian since
(—, —)sp is alternating. 0

3.2 Simple components of Q[H]. We now recall some basic facts about the
group ring Q[H] and its modules. The ring Q[H] is a semisimple Q-algebra and thus
is isomorphic to a finite product of simple Q-algebras

4
QH] =Q x ] 4.
=1

Moreover, for each i, we have A; = Mat,,,(D;) for some finite-dimensional division
algebra D; with center L; which is a finite-dimensional field extension of Q. For all
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i, the algebra A; acts on the Q-vector space V; = D" by left multiplication; via
the projection to A;, each V; is a Q[H]-module which is furthermore irreducible. We
say V; is the irreducible module (or representation) corresponding to A;. Moreover,
every irreducible Q[H]-module (or representation of H) is isomorphic to one of the
Vi, and note that as a Q[H]-module, A; = V™.

We describe how 7 acts on the decomposition in the following lemma.

LEMMA 3.2. Each A; in the decomposition of Q[H| is T-invariant.

Proof. Note that each A; is a minimal two-sided ideal of Q[H]. For the purpose of
the proof, set Ay to be the trivial factor Q in the decomposition of Q[H] . Since 7
is an anti-homomorphism, 7 sends minimal two-sided ideals to minimal two-sided
ideals. Since 7 is order 2, there are two possibilities; for any i either 7(A;) = A;, or
there is a j # i such that 7(4;) = A; and 7(A;) = A;. We must rule out the second
possibility (Our proof depends on the base field being the totally real field Q. The
lemma is false, for instance, over C).

Let e; be the unit in A;. It suffices to show that 7(e;)A; # 0. Consider the
representation

U : Q[H] — Endg(4;) = Mat,(Q)

given by left multiplication where ¢ = dimg(A4;). Viewing the matrices with entries
in C yields a representation of H to GL(C), and so x(h) = x(h~!) where x is the
character for ¥ and ~ indicates complex conjugation. Since the traces are necessarily
rational, in fact y(h) = x(h~!), and linearity of x implies x(r) = x(7(r)) for any
r € Q[H]. Thus, 0 # x(e;) = x(7(e;)) and left multiplication on A; by 7(e;) is

1OoNn-zero.

Recall from Theorem 2.1 that R = Q[H]?9~2 @ Q2. Thus, as a Q[H]-module

L
o ()
=1

Let M; C R be the submodule such that M; = A?gq. Each A; is isomorphic to
several copies of an irreducible Q[H]-module V; and V; 2 V; for i # j. Hence, the
submodule M; is unique, and furthermore any Q[H]-automorphism ¢ of R restricts
to an automorphism of each M;. Since all A; except A; annihilate M;, we obtain a
representation

Ath[H](]%, <—, —>) - AUtAi(Mia <_7 _>>

Our next task then is to understand this automorphism group (Note that we omitted
the module corresponding to the trivial representation. This is because the automor-
phism group turns out to be Sp(2g, Q) and the representation I'gr, — Sp(2g,Q) is
the standard symplectic representation of the mapping class group).
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3.3 The automorphism group of M;. We first need to know the properties
of (—, —) restricted to each M;. By abuse of notation, we will view 7 as an involution
on Az

LEMMA 3.3. For any m,m’ € M;, the pairing (m,m’) lies in A;. Furthermore,
(—,—) : M; x M; — A; is a nondegenerate, sesquilinear, skew-Hermitian form when
viewed as a form with values in A;.

Proof. Let e; be the unit in A;. When restricted to M;, the form takes values in A;
since sesquilinearity implies that

(m,m’y = (e;m,e;m') = e;(m,m)7(e;) € A;.

When viewed as a form with values in A;, it is clear that the form remains sesquilinear
and skew-Hermitian. Since (—, —) is nondegenerate on all of R, to show that it is
nondegenerate on M;, we only need to show that the M; are mutually perpendicular.
This is verified by essentially the same computation. If m € M; and m’ € M; and
i # j, then

(m,m') = (e;m,e;m') = e;(m,m")7(ej).
Lemma 3.2 implies that 7(e;) = e;, so the product is 0. O

The group Auty, (M;, (—, —)) is the set of the Kj;-points of an algebraic group
defined over K; where K; = L7, the fixed field of 7 acting on L;. Our next goal is
to determine the structure of this algebraic group; to this end, we will use some of
the basic theory of involutions and follow the exposition in [PR94, Section 2.3.3].

Involutions In this subsection, we utilize the dictionary between nondegenerate
bilinear forms and involutions to describe the structure of Gy ; = Aut 4, (M;, (—, —)).
For convenience, we will fix A = A;, M = M;, and G = Gp; as we will only be
considering each algebra individually, so M = A29~1) with the sesquilinear form
as described above. We set L to be the center of A and K = L7 the subfield of
L fixed by 7. The dictionary is that the sesquilinear form goes over to the unique
involution o : End4 (M) — End4 (M) satisfying the following for all m,m’ € M and
C € Endg(M):

(Cm,m") = (m,o(C)m’).
This is the adjoint involution associated to the sesquilinear form. Now,

Auta(M, (—,~)) = {C € Enda(M) |
= {C € Endu (M) |
= {C € Endy (M) |

(Cm,Cm/)y = (m,m'y Vm,m' € M}
(m,o(C)Cm'y = (m,m'y VYm,m' € M}
o(C)C =1d} =G.

In other words, those automorphisms preserving the form can be entirely determined
by the involution alone.
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Involutions of finite-dimensional simple algebras over a field k form a trichotomy
based on kind/type. The first distinction is that of kind. An involution 7 on a finite-
dimensional simple algebra A over a field k is of the first kind if it fixes the center of
A and is of the second kind if it does not. Furthermore, if A is of the first kind and
n? = dimg(A), then either dimp, (A7) = n(n+1)/2 or dimg (A7) = n(n —1)/2 where
L is the center of A and A" is the subspace of A fixed by 7. If the former is true,
we say 7 is of orthogonal type and if the latter is true, 7 is of symplectic type. It is
a standard fact that these are the only two possible types of involutions of the first
kind and this fact is, in particular, implied by Lemma 3.6. We note that in [PR94],
orthogonal and symplectic type are called first and second type respectively.

We now set B = Ends(M) and seek to understand the kind and type of the
involution ¢ in terms of the kind and type of 7. First, however, we prove that B is
itself a simple algebra. Since M is a free A-module of rank 2g — 2, B is isomorphic
to Matog_2(A) and we henceforth fix some such identification.

LEMMA 3.4. B is simple.

Proof. Since A is a simple finite dimensional Q-algebra, so is A°?, and so A%
is isomorphic to a matrix algebra Mat,,(D) over a division ring D. Thus, B =
Matgg—2(A%) = Mat 949y, (D) which is simple. 0

We now convert our terminology into that of matrices to establish the relation
between the type and kind of 7 and o. Note that 7 is also an involution on A
of the same kind and type. For a matrix C' = (¢;j) € Matog_2(A%) = B, we set
C* = (7(cj;)). Letting ey, ..., ezg—2 be the standard free basis of A?972 we define
a matrix F' = (fi;) where f;; := (ej, e;). It can be checked that (Cv,w) = (v, Dw)
for all v,w € M if and only if FC' = D*F. Moreover, F* = —F as (—,—) is skew-
Hermitian. Thus, since (FC)* = C*F* = —C*F and (D*F)* = —FD, we have

o(C)=F'C*F.

LEMMA 3.5. The involutions o and T are of the same kind. The type of o is opposite
that of T.

Proof. 1t is clear that L° = L7 so they are of the same kind. A straightforward
argument counting dimension shows that the involution * on B has the same type
as 7 if they are both first kind. Because (—, —) is skew-Hermitian, it follows that
F* = —F. Then, a computation shows that if C* = —C, then o(F~'C) = F~'C
and if C* = C, then o(F~'C) = —F~'C. Hence, via F~!, the 41 eigenspace of * is
isomorphic to the —1 eigenspace of ¢ and vice versa. This implies ¢ has the opposite
type to x*.

Extending scalars. Consider now the following three examples of involutions v for
matrix algebras over C.

(1) v : Mat,(C) — Mat,(C) defined by v(N) = N*.
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(2) v : Mat,(C) — Mat,(C) defined by v(N) = JN'J~! where n is even and
(o1
—10)°
(3) v : Mat,(C) x Mat,,(C) — Mat,(C) x Mat,,(C) defined by v(A, B) = (B!, A%).

Note that if we consider the elements satisfying v(M)M = I, then from (1), we
obtain O, (C), from (2), Sp,,(C) and from (3), GL,(C). Moreover, it can be easily
checked that the involution in (1) is of orthogonal type and the involution in (2) is
of symplectic type. We quote the following result [PR94] which essentially tells us
these are the only involutions after extending scalars.

LEMMA 3.6. Let B be a finite-dimensional simple Q-algebra with center L and in-
volution o. Let K = L? and let ¢ be the unique C-linear extension of o to B ® C.
K

Set n = dimp(B).
e [f o is of the first kind, then there is a C-algebra isomorphism

Y B%C%Ma‘cn(@)

such that v = p&p~! is one of the involutions (1) or (2).

e [f o is of the second kind, then there is a C-algebra isomorphism
v:B % C = Mat,,(C) x Mat,,(C)

1

such that v = @@~ is the involution (3).

At this point, we can already prove part of Theorem 1.7. Specifically, we can
show that the type of G is determined by the type and kind of 7. We will be able to
prove the full theorem after establishing further results in Section 4.

3.4 Reduced norm, reduced trace, and G1(9). We conclude this section
with a few facts on reduced norms and apply them to

G(D) = Auto(D%72, (=, -)) C Ends(4%2)

where, as defined in the introduction, O is the image of Z[H]| in A. Our goal is to
prove Proposition 3.9, which gives an “upper bound” on the image of the repre-
sentation p which we study (while Theorem 1.6 gives the “lower bound”). Recall
from the introduction that G'(9) = G}, (D) is defined to be the subgroup of G(O)
consisting of elements of reduced norm 1.

The reduced norm (over L) of a finite-dimensional central simple L-algebra B is
defined as follows. Let ¥ be any field extension of L such that B ®p E splits, i.e.
there is some isomorphism ¢ : B®y E — Mat,(E) for some n. Then the reduced
norm (over L) for b € B is

IlI'dB/L(b) = det(cp(b & ].))
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The reduced norm is independent of the isomorphism ¢, and nrdg,r(B) C L (see
e.g. [R75, Section 9]). In later sections, we also use the reduced trace which, for b € B,
is

trd /() = Tr(p(b® 1)

where Tr is the trace of the E-linear map ¢(b). Just as for reduced norm, the reduced
trace always lies in L and is independent of . From the definitions, it is clear that
trdg,r, is L-linear.

LEMMA 3.7. Let B = Matgy_2(A). Let b € G = Auts(A¥2,(—,—)) C B and
A =nrdg,r,(b). Then, 7(A\)A = 1. In particular, if T is of the first kind, then A = +1.

Proof. We know that b € G satisfies 1 = o(b)b, and so

1 =nrdg/r(o(b)) nrdg,1(b) = nrdg,1(a(b))A.

Thus, it suffices to show that nrdg,1(o(b)) = T7(A).

Let E be a finite Galois field extension of L such that there is an isomorphism
¢ : B®p E = Mat,(F) for some n. Let ¢ be the composition B — B ® F =
Mat,,(E). Let v = 7|, and let © be an extension of v to a Galois automorphism
of E. For C = (¢;5) € Mat,(F), define C* = ((cj:)). Now, let ¢ : B — Mat,(E)
be the map defined by b — (¢(o(b)))*. Note that since o and * are both anti-
homomorphisms, 7 is a homomorphism, and moreover, one can check that ¢ is an
L-algebra homomorphism. By the Skolem—Noether Theorem, ¢ and ¢ are the same
up to conjugation by an element of Mat, (E). Thus,

nrdpy(0(b)) = det(¢(a (b)) = v~ (det(¥(b))) = v~ (det(4(b))) = v~ (mrd /L (b))
Since nrdp, 1 (b) € L, we can replace v~ with 771 or equivalently 7. O

We next show that elements in the ring of integers in a cyclotomic field F of
“absolute value” +1 are roots of unity.

LEMMA 3.8. Let E = Q(¢) be a cyclotomic field, let O its ring of integers, and let
1 : E — C be some embedding into C. If \ € O and |t(\)|? = 1, then \ is a root of
unity.

Proof. According to a theorem of Kronecker, if all the Galois conjugates of an alge-
braic integer A have absolute value <1, then A is a root of unity. Let v be the order
2 Galois automorphism that is the restriction of complex conjugation (via ¢). As
lt(e)]? = t(v(e)e) for any e € E, it will suffice to show that v(a(\))o(A) = 1 for all
Galois automorphisms o of E. Since E/Q is cyclotomic, its Galois group is abelian,
and thus

v(ae(\)o(\) = a(v(\)o(\) = a(v(M)A) = o(1) = 1. 0
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REMARK. The above lemma holds for any CM-field. The essential point is that
complex conjugation always restricts to the same automorphism of E regardless of
the embedding of F into C.

PROPOSITION 3.9. The group G(9) is of finite index in G(9).

Proof. It suffices to show that the image of G(9) under nrdp,; consists only of
roots of unity. If 7 is of the first kind, this is obvious by Lemma 3.7. Suppose T
is of the second kind. Any A € nrdg,;(G(9D)) lies in Op where O, is the ring
of integers in L, and by Lemma 3.7, A satisfies 7(A\)A = 1. Fix some embedding
v : L — C. By Proposition 4.3 below, 7|1 extends to complex conjugation, and so
1= o(7(M)A) = t(M)e(X) = |¢(N)|?. Since L is a subfield of a cyclotomic field E (to
which ¢ extends), by Lemma 3.8, A is a root of unity in L. 0

4 Determining Type and Kind of 7

The kind of algebraic group into which pg,; maps depends on 7|4,. The kind and
type of 7 depends on the representation theory of the finite group H. We therefore
dedicate this section to study this dependency. This will be important later when
we come in Section 9 to produce specific arithmetic groups as (virtual) quotients of
Mod(X). However, this section may be skipped on a first reading if the reader wants
to see first why the image of pp ) ; is an arithmetic group. Before beginning, we note
additionally that the material presented here is known to experts, but we include it
for the convenience of the non-expert and for lack of a convenient reference. As in
the previous section, we will focus on one nontrivial component of Q[H] and drop
the subscript i. Since we fix some A, by abuse of notation, we will refer to 7|4 as 7.

Recall that there is a trichotomy: 7 can be of the first kind and orthogonal type, of
the first kind and symplectic type, or of the second kind. This trichotomy corresponds
in a nice way to other trichotomies in the representation theory of the finite group
H. The first trichotomy arises from the various kinds of invariant bilinear forms
for complex representations. Fix some embedding L <— C and some isomorphism
A ®p C = Mat,(C). Then the composition H - A — A ®; C — Mat,(C) yields
an action of H on V = C" which in turn is an irreducible C[H]-module. There are
three possibilities: V' has an H-invariant non-degenerate symmetric bilinear form,
an H-invariant non-degenerate alternating bilinear form, or no nonzero H-invariant
bilinear form. This corresponds to the type and kind of 7 as follows.

PROPOSITION 4.1. Keeping notation as above, we have that, restricted to A, the
involution T is

e of the first kind and orthogonal type if and only if V has an H-invariant
nondegenerate symmetric bilinear form,

e of the first kind and symplectic type if and only if V has an H-invariant non-
degenerate alternating bilinear form,
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e of the second kind if and only if V has no invariant non-zero H-invariant
nondegenerate bilinear form.

Before proving this proposition, we first describe two other trichotomies closely
related to the trichotomy of kind and type. One of these is a trichotomy involving
the real representations of H. This trichotomy also relates to a dichotomy involving
the center L of A. In order to present the dichotomy, we first recall some elementary
facts about L. A short proof of the lemma is given below.

LEMMA 4.2. Let A be a simple component of Q[H]| with center L. Then, L is a
subfield of a cyclotomic field extension of Q. Moreover, L is either totally imaginary
(there are no embeddings L — R) or totally real (all embeddings L — C have image
in R).

The next proposition presents the relation to kind and type. The isomorphisms
in the proposition below are as R-algebras.

PROPOSITION 4.3. Let notation be as above, let n> = dimy,(A) and let e : L — C be
an arbitrary embedding. Then, the embedding satisfies K = e~ *(R), i.e. T, restricted
to A, is of the first kind if and only if L is totally real. If T is of the second kind,
then 7|1, extends to complex conjugation via the embedding e. Moreover, restricted
to A, the involution T Is

e of the first kind and orthogonal type if and only if A @k . R = Mat,(R),
e of the first kind and symplectic type if and only if A ®f . R = Mat,, /5(H),
e of the second kind if and only if A ® . R = Mat,,(C).

Another trichotomy relates to the Frobenius—Schur indicator ¢ for any character
x of H, defined to be

1
X = @ Z X(hQ)-

heH

We will be quoting some results from [JLO1] where ¢y is defined differently and only
for irreducible C-characters (over C). However, the definitions coincide for irreducible
characters (see the proof of Theorem 23.14 in [JLO1]), and this is all we require.

ProPOSITION 4.4. Continuing our notation as above, let x be the character cor-
responding to the irreducible Q-representation V of H. Then, restricted to A, the
involution 7 is

e of the first kind and orthogonal type if and only if 1x > 0,
e of the first kind and symplectic type if and only if vy < 0,
e of the second kind if and only if 1y =0

We start with the following elementary lemma showing that 7 is the unique
involution on A with a certain property.
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LEMMA 4.5. Suppose k is some field and 1 : k[H] — A is a surjective homomor-
phism of k-algebras. Then, there is at most one k-algebra involution v on A such

that v(y(h))y(h) = 1d.
Proof. The elements 1(h) generate A as a k-vector space. O

Proof of Proposition 4.1. Suppose 7 is of the first kind. Then, 7 is L-linear and the
involution extends to a (C-algebra) involution 7 of A®,C. By Lemma 3.6, there is an
isomorphism ¢ : A®;,C = Mat,,(C) such that v = @7~ is the standard symplectic
or orthogonal involution. If ¢ is the composition Q[H] — A — A®y, C, then it is the
case that 7(¢(h))¥(h) = Id and so v(p((h))) ¢(1(h)) = Id. This implies ¢(1)(h))
preserves a nondegenerate symmetric bilinear form (resp. alternating form) if 7 is of
orthogonal (resp. symplectic) type.

Suppose that V' has a non-zero H-invariant bilinear form. Then, since V is ir-
reducible, the form must be nondegenerate because a nontrivial null space would
necessarily be H-invariant. Now, let ¢ be the projection QH] — A. For all h € H,
the adjoint involution v associated to the form satisfies v(¢(h) @ 1) = (¥(h) ®1)7L.
Thus, v preserves A = A® 1, and by Lemma 4.5 v|4 = 7. Since v is C-linear,
L®1=1®L,and v|rg1 = 7, the involution 7 is L-linear and thus of the first kind.
Moreover, v is the extension of 7, so they are of the same type and v is of orthogo-
nal type (resp. symplectic type) when the invariant bilinear form is symmetric (resp.
alternating). 0

Before moving on to the next characterization, we first prove Lemma 4.2 and a
lemma about involutions when projecting R[H] to a simple R-algebra.

Proof of Lemma 4.2 First we show L is a subfield of a cyclotomic field. The reduced
trace (over L) is an L-linear map trdg,r : A — L, and it is clear that it is surjective
(Indeed, trd,,;(L) = L). Choose some embedding L. — C and an isomorphism
¢ A®r C = Mat,(C), and let 7 : Q[H|] — A be the projection. Some power of
the image ¢(r(h) ® 1) is the identity, and so its trace (which is trdy,(r(h)) by
definition) is a sum of roots of unity. The composition trdy,r, or is Q-linear and H
spans the image L as a Q-vector space. It is clear from this that L is a subfield of a
cyclotomic field. The second claim follows from the fact that subfields of cyclotomic
fields are all Galois extensions of Q. O

LEMMA 4.6. Suppose there is a surjection of R-algebras ¢ : R[H] — B where B is
simple. There is an R-linear involution v on B such that v(¢)(h))y(h) = 1d for every
h € H and

e v is of the first kind and orthogonal type if and only if B = Mat,,(R) for some
m e N,

e v is of the first kind and symplectic type if and only if B = Mat,,(H) for some
m € N,

e v is of second kind if and only if B = Mat,,(C) for some m € N, in which case
the center of B is C and C" = R.
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Proof. First, note that since the only finite-dimensional division algebras over R are
R, C, and H, it follows that B is isomorphic to one of Mat,, (R), Mat,, (C), Mat,,, (H)
for some m € N. Let respectively D be one of R,C, or H. We can, without loss
of generality, identify B with Mat,, (D), and thus obtain a corresponding action on
D™,

In the cases of D = R, C, we can average the standard inner or Hermitian product
on D™ under H to obtain an H-invariant inner or Hermitian product. In the case
of H, there is also a standard Hermitian product, namely v-w = " | v;w; where @
is the involution on H given by a + bi + ¢j + dk = a — bi — c¢j — dk. In this case also,
averaging the standard Hermitian product yields an H-invariant Hermitian product.
In each case v - v > 0 for nonzero v and the average has the same property. By a
D-linear change of basis via Gram-Schmidt, we may assume the H-invariant inner
or Hermitian products are the standard ones. We can take v(b) = b’ in the case of
D =R and v(b) = b in the cases of D = C,H. This involution is easily checked to
satisfy the claimed properties. Uniqueness of v by Lemma 4.5 allows us to conclude
the “only if” in each of the three statements. O

Proof of Proposition 4.3. Let K’ = e~(R). Implicitly, when we tensor over K’ or L,
we will do it via the map e. If K/ # L, then we have an isomorphism ¢’ : L& R — C
satisfying €/ (¢ @ \) = e(£)\, and so by associativity of tensor products, there are
isomorphisms

A®K/R§A®L(L®K/R)§A®LC.

In either case (L = K’ or L # K'), A®g R is isomorphic to A tensored over its
center L with a simple R-algebra (R or C) and hence is simple. We have A ® g R =
Mat,(R), Mat,,(C), or Mat,, /o (H).

Let ¢ : Q[H| — A be the projection. There is an induced homomorphism R[H] =
Q[H] ®g R — A ®k' R, and since the image of H generates A over Q (and K'),
this map is surjective. Let v be the involution on A ®+ R as in Lemma 4.6, which
is unique by Lemma 4.5. Since v(p(h)) = ¢(h)~! and ¢(h) € A ® 1, the involution
v restricts to an involution on A = A ® 1 which is K’-linear (hence Q-linear). By
uniqueness (Lemma 4.5), v|4 = 7. By Lemma 4.6, the v-fixed subfield of the center
in all cases is R whose intersection with e(L) is e(K’), and agreement of v and 7 on
A implies K’ = K.

The above argument implies that if L = K, then all embeddings of L in C are
real-valued; consequently, A ® x R has an involution of the first kind and orthogonal
or symplectic type and so A ®x R is isomorphic to either Mat, (R) or Mat,, »(IH)
respectively. Conversely, if A®x R is either Mat, (R) or Mat,, />(H), then v fixes the
center and so fixes L which implies 7 is of the first kind. The remaining cases are
L # K and A @ R = Mat,,(C) and so they coincide. 0

To prove Proposition 4.4, we first establish some facts for 1y when x is an irre-
ducible C-character. We recall some theorems relating ¢x to the existence of certain
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invariant bilinear forms on irreducible representations and translate them into facts
about involutions. We will then bootstrap the results to Q to prove the proposition.
We recall Theorem 23.16 from [JLO1] with some mild modification. Note that for
irreducible characters (over C), tx takes only values in {—1,0,1}.

Theorem 4.7. Suppose V is an irreducible C[H|-module with character x. Then
tx # 0 if and only if V admits a non-zero H-invariant bilinear form, and in this
case, the form is nondegenerate. Furthermore, the form is symmetric if and only if
tx = 1 and skew-symmetric if and only if 1y = —1.

Proof. This is precisely Theorem 23.16 from [JLO1]| except for our claim that the
forms are nondegenerate (In [JLO1], it only says “non-zero”). The form must be
non-degenerate by Proposition 4.1. O

By Proposition 4.1, proving Proposition 4.4 requires only that we translate infor-
mation about complex traces to rational ones. Recall that A is a simple factor in the
decomposition of Q[H]. Let W be the corresponding irreducible Q-representation.
Let A = A®y C. We have a surjection C[H| = Q[H] ®p C — A = Mat,(C) and
a corresponding irreducible C-representation V. Unfortunately, it is not always the
case that V is W tensored with C, so we must expend some effort to relate the
characters.

First, we recall the definitions of various traces for algebras over fields and some
well-known facts relating them. Suppose A is a finite-dimensional Q-algebra with
center L. Then, A acts on itself by left multiplication and this gives a representation
n¢ : A — Endp(A). Define the trace of a € A over L to be

Tra/p(a) = tr(nea)).

Furthermore, for any field k& contained in L, left multiplication by a is k-linear and
we can consider the trace as a k-linear map on the k-vector space A. Denote this
new trace Tr 4 (a).

If k is a subfield of L, then as for A, we can view elements in L as k-linear maps
on L by left multiplication. As before we have Try, (o) for a € L. We recall the
following elementary fact about traces [R75, Section 9]. In particular, for the algebra
A, we have Tr 4 /,(a) = Trp /1, (Tra/1(a)).

LEMMA 4.8. Suppose V' is an L-vector space and T : V — V is L-linear. Let T} be
T viewed as a k-linear map on the k-vector space V. Then,

tr(Ty) = Trp . (tr(T)).

We relate the trace Tr 4y, and the corresponding character for irreducible repre-
sentations.
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LEMMA 4.9. Suppose V is k-vector space and H — GL(V) is an irreducible k-
representation and suppose A is the corresponding simple k-algebra in the decom-
position of k[H]. Let x be the character of V. Then, for a € A,

mx(a) = Tra/i(a)
where A = V™ as k[H|-modules.

Proof. By definition of character, x(a) is the trace of a via the action of k[H], and
hence A, on V. The action of A on itself block-diagonalizes as m copies of its action
on V and the result easily follows. O

Recall the reduced trace trd,,y, for a central simple L-algebra A from Section
3.4. In addition to the properties discussed in that section, we have that Try,;, =
ntrdy;, where n? = dimy (A) (see [R75, Section 9]). Now, we have the tools to prove
Proposition 4.4.

Proof of Proposition 4.4. As above, set A = A ®1 C which has an isomorphism
v : A — Mat,(C), and let V be the corresponding irreducible C-representation of
H. Let 9 be the corresponding character. Proposition 4.1 and Theorem 4.7 imply
that it is sufficient to show that () and ¢y are positive multiples of each other.

Now suppose n4 : H — A* is the representation from H to the invertible
elements of A and n4 : H — A* is the composition of n4 with the canonical
A — A®p C= A. Note that for all h € H, by definition, ¢ (h) is the trace of na(h)
which is the reduced trace (over L) of na(h). Thus,

[Hlwp =Y (k) =) trdar(na(h?)).
heH heH
By the properties of reduced trace,
> trdap(na(h Z TrasL(na(h?)).
heH hEH

Now, suppose m is such that A =2 V"™ where V is the irreducible representation
corresponding to A. Since 1y € {—1,0,1}, we further have that if d = dimg(L),

|H|wp = i[‘ Trpo(w) = % Trr g (Z TrA/L(UA(h2))>

heH
2 |H |m
Y Teaamah) = 25 37 ()
heH heH
where the fourth equality follows from Lemma 4.9. O

We now prove Theorem 1.7. As we have been doing, we drop the subscript 4 in
our proof.
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Proof of Theorem 1.7 Recall that G = Auta(A2972 (—, —)), and that o is the ad-

joint involution defined on B = Matog_2(A) and associated to (—, —). Extend o
(uniquely) to a C-linear involution & on B ® C and let
K

Gz{C’GB%C\&(C)C:I}.

Then, G is a K-defined algebraic group whose K-points are G. Let n? = dimp,(A).

First, suppose that 7 is of the first kind. By Lemma 3.6, there is an isomorphism
¢ : B®g C — Mat(s,_2),(C) such that v = @G¢~! is either involution (1) or
(2). The involution v has the same type as ¢ and o, which, by Lemma 3.5, have
the opposite type of 7. Thus ¢ maps G isomorphically onto Sp(gy_2),(C) if 7 is of
orthogonal type and onto O(ag_2),(C) otherwise.

If 7 is of the second kind, then there is an isomorphism ¢ : B&y C — Mat(g4_2),
(C) x Mat(z4-2),(C) such that v = @op~" is the involution (3). Arguments simi-
lar to the above show G = GL(34_9),(C). The remaining equivalences follow from
Propositions 4.1 and 4.3. O

5 Submodules of M;

In this section we analyze further the structure of R, when p is ¢-redundant. In
this case, we show that R decomposes into two isomorphic totally isotropic sub-
modules. Later, in Section 6, we will see that the image of the handlebody group
under p preserves one of the submodules and thus has a block uppertriangular form.
Moreover, we will show that when p is ¢-redundant, there is an explicit rank two
Q[H]-submodule of R which allows us (in Section 6) to produce two tightly controlled
unipotent elements in the image of pg .

Recall that if ¢ : Ty, — F} is a surjective homomorphism, we say that an epimor-
phism p : Ty — H is ¢-redundant if p factors through an epimorphism p’' : F; — H
which is redundant (i.e. the kernel contains a free generator). As mentioned in the
introduction, every epimorphism ¢ : T, — F, arises as follows [J69, Theorem 5.2].
Let H = H, be a genus g handlebody and pick some identification of OH with ¥,.
The inclusion ¥, — H induces a map on the fundamental groups which is surjec-
tive. Since the fundamental group of H is a free group, this induces a surjective map
¢ : Ty — Fy = mi(H) where F, is the free group of rank g. Henceforth, we will
simply refer to m1(H) as Fy.

Now fix some ¢ : Ty, — Fy arising from an identification ¥ = 0H, fix some ¢-
redundant p, and set S = kerp’ for the corresponding p’ : F; — H. Let Y — % be
the cover corresponding to p.

5.1 The handlebody group and Aut(Fy). In this section, we recall a basic
fact about handlebody groups. Let % be some point on the boundary of H. The
handlebody group with fixed point, Map(H, %), is the subgroup of those mapping
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classes in Mod(X, ) which contain a representative homeomorphism extending to
a homeomorphism of H. Recall that the handlebody group (without fixed point)
Map(H) is the similarly defined subgroup of Mod(X).

Theorem 5.1 [Z62,G64,M63].  The natural homomorphisms Map(H, ) — Aut
(Fy) and Map(H) — Out(Fy) are surjective.

5.2 Free submodule of rank two. We start by finding a special torus with
one boundary component embedded in X. Let x € ¥ = OH be a basepoint for the
fundamental groups of both H and X.

LEMMA 5.2. Let p : T, — H be ¢-redundant and p' : F; — H the induced map.
Then, ¥ contains a subsurface Y homeomorphic to a torus with one boundary
component such that the image of m1 (X', ) in m1(X, ) = T, lies in the kernel of p.
Moreover, there are simple closed curves a,b in X' such that

e o and b intersect once, and (a,b)g, = 1,

e the homology classes of a,b generate Hy(X', Q),
e b bounds a disc in 'H,

e a,b avoid *.

Proof. Let a be a free basis element of F, lying in the kernel of p’. This exists by
the assumption that p is ¢-redundant. We first show that the homotopy class «
contains some simple closed curve a supported on Y. Moreover, we show that there
is an oriented simple closed curve b on ¥ passing through * such that b intersects
a transversely at one point and the based homotopy class of b lies in the kernel of
¢ (Note that since we define Mod(X) as Homeo™ (X)/ Homeog(X), we are implicitly
working in the category of topological spaces and so “transverse intersection” strictly
speaking has no meaning. However, Mod(3) is also Diff " (X)/ Diffo(¥), and we can
just as well work in the smooth category). To see all this, note that by assumption

there is some free basis a = o, ..., a4 of F,. Recall that ¢ : T; — F} is the natural
map on fundamental groups. By explicit construction, one can find a (potentially
different) free basis o), ..., a; of I, such that each homotopy class o; contains a

simple closed curve a on ¥; moreover, we can ensure there is some oriented simple
closed curve b’ passing through x such that ) and b intersect once transversely and
b bounds a disc in H (so b’ lies in the kernel of ¢). See Figure 1.

Since Map(H, *) — Aut(F}) is surjective (Theorem 5.1), there is some homeo-
morphism ¢ of the handlebody fixing * and mapping o to a. Let a = ¢(a’) and
b= (V). Note that b bounds a disc in H as well.

Since a and b intersect once transversely, a regular neighborhood Y’ of @ and b in
Y is a torus with one boundary component and with fundamental group generated
by the homotopy classes of a and b. Since (the homotopy classes of) a and b both
lie in the kernel of p, it follows that (the image of) 7 (¥, ) lies in the kernel.

As it stands, the curves a,b satisfy the first three properties required by the
lemma but a and b do not avoid *. This is easily fixed by an isotopy of the curves. O
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=\

Figure 1: The curves af,...,a; and b’ in the proof of Lemma 5.2 for g =5

Let X', a,b be as in the lemma. Then, the preimage of ¥’ under the cover & — ¥
consists of |H| disjoint homeomorphic copies of Y. Label these surfaces as Eh as h
ranges over H so that dh(Z’ L) = Z’h where dj, is the deck transformation induced
by h € H.

Similar to X', the preimages of a and b each consist of |H| simple closed curves
which project homeomorphically to a and b via the covering map. Call the preimages
an and by as h ranges over H so that ap,b, lie in fl’h Then, ap, = dp(a1,) and
bp, = dp(b1,,). For a simple closed curve ¢, we denote its homology class by [c].

LEMMA 5.3. Let notation be as above. Then |ay,,] (similarly [131~H]) generates a sub-
module of Hy (%, Q) isomorphic to Q[H]|. Together, [a1,] and [b1,] generate a sub-
module isomorphic to Q[ H]?. Moreover, ([a1,], [b1,]) = 1.

Proof. Consider the disjoint union ¥/ = Upc¢ %}, From the Mayer—Vietoris sequence,
one can deduce that H; (X', Q) is a direct summand as a Q-vector space of H (X, Q).
Since the action of H preserves Y and its complement, H, (Y, Q) is a summand as
a Q[H]-module. As 3 is the disjoint union of the 3}, it follows that Hy (%', Q) =
Dren H; (%), Q). Bach Hy (%), Q) is 2-dimensional so dimg Hy (X, Q) = 2|H|.

Now, we know that for each h € H, the classes [a;] and [by] generate Hy (X}, Q),
and so [a1,,], [blH] generate Hy (Y, Q) as a Q[H |-module. Because of dimension, we
must have [dy,],[b1,] freely generate, and Hi (X', Q) = Q[H]2. It follows that each
of [a1,] and [b1,] generate a module isomorphic to Q[H]. For the last claim, recall
that by definition,

(la1,], b)) = Y (@) h - brsph.

heH

Since h - [b1,] = [bn] is disjoint from a1,,, the only term which survives is that for
h = 1. Since ([a1,], [b1,])sp = ([al, [b])sp = 1, the claim follows. 0
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5.3 Totally isotropic subspaces. The inclusion ¥, < H induces a surjective
map H;(3,,Q) — Hi(H,Q). It follows that the action of a homeomorphism of
the handlebody preserves the kernel. It is easy to see that the kernel of this map
is totally isotropic relative to the alternating intersection form (—,—)sp. L.e. for
any two elements 3,4 in the kernel, (3, 3")sp = 0. Moreover, this subspace has a
complementary totally isotropic subspace which projects onto H;(H, Q). We want
to show similarly that R= Hl(f], Q) has an isotropic submodule and decomposition.

Now, let S = (S/[S,S]) ®z Q which is naturally identified with H;(H,Q), the
rational first homology of the cover H — H corresponding to the inclusion S — Fy.
Let P be the kernel of the map gZ; r: R — S induced by ¢. Note that this kernel is
equivalent to the kernel of the map H; (2, Q) — Hi(H, Q).

LEMMA 5.4. The subspace Pisa Q[H]-submodule which is toticzlly isotropic relative
to the sesquilinear form (—, —). Moreover, as Q[H|-modules, R = P & S and both
P and S are isomorphic to Q[H]9~* & Q.

We remark that below we show that the isomorphism P P& S~ R can be chosen
such that the image of S is totally isotropic relative to (—,—).

Proof. As mentioned above, the map Hy(X,Q) — H;(H,Q) has totally isotropic
kernel relative to the alternating intersection form. Applying the same fact to the
map on the covers Hl(i‘, Q) — Hl(ﬂ, Q) implies that P is totally isotropic relative
to (—, —)gp. Since the sesquilinear form is defined as a sum with coefficients in terms
of (—, —)gp, it follows that P is also totally isotropic relative to the sesquilinear form.

It follows from the definitions that ¢p is a Q[H]-homomorphism, so its kernel, P,
is a Q[H]-submodule. By Theorem 2.1, S = Q[H]9~! & Q. This fact combined with
Proposition 1.1 and surjectivity of ¢ implies the rest of the Lemma since Q[H] is
semisimple. O

Now consider the above situation projected to the ith isotypic component M; of
R using the notation of the previous sections. The above decomposition projects to
a decomposition of M;, and we can conclude a stronger statement relative to the
sesquilinear form. Let M/ be the projection of P to M;.

LEMMA 5.5. Let &1H,l~)1H be as in Lemma 5.3 and di,Bi the projection of their
homology classes to M;. The module M/ is totally isotropic relative to (—, —), and
there is a subspace M of M; such that

e M! is totally isotropic relative to (—,—),

o M; = M & M, ~

o there are free A;-bases (; = mj ,miq,...,m; 4 (vesp. & = mj;,my, ...,
my, 1) of M (resp. M;") such that <m”,mzk> 8k

Proof. The module M; ! is totally isotropic since P is. Notice that by the choice of
by 4+ 1ts homology class lies in P. The homology class of by . generates a copy of
Q[H] in P, and so [by,,] necessarily generates a copy of A; in M;. Thus, 3; can be
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extended to some basis 3; = M1, M 9y -« -,y ;4 of M]. Furthermore, we can ensure
(@, m; ;) = 615 (If it is not already true, we can alter m; ; for j > 1 by adding an
appropriate multiple of ;).

Lemma 5.4 implies that M/ is isomorphic to AY 71, and so we immediately have
some complementary subspace /N; which is isomorphic to Alg -1 (but not necessarily
isotropic). Moreover, since &; does not lie in M/, we can further arrange that N;
contains ¢&;. Consider the homomorphism to the dual space of IV;

Mz/ — HomAi (Nl, Az)

mj — (=, mj). (2)
Note that this is an A;-module homomorphism where the (left) A;-module structure
on Homy, (N;, A;) is given by (a - f)(n) = (f(n))7(a) for all n € N;. Since M/ is
totally isotropic and (—, —) is nondegenerate, each m’ € M/ must pair nontrivially
with some element in N;. Consequently, the map in (2) has trivial kernel, and the
fact that Hom4, (N;, A;) = A9 implies (2) is an isomorphism.

There is therefore a unique basis n; 1, . .., n;g—1 of N; such that (n; j,m} ) = 6;.
Moreover, since &; lies in N; and («y, m;]> = 01, it follows that n; 1 = &;. From N;,
we can construct a submodule M which has the same properties as N; but is also
isotropic.

Let Cjk = (niyj,ni7k> for j 75 k, and let Cjj = %(nid,ni?j). Note that since <—, —>
is skew-Hermitian, 7(cjx) = —cg ;. Let mi; = n;j + >, cjom;, and M]’ be the
submodule generated by m/,...,m/ s—1- Note that m;, =n;1 = &;. It follows from

the properties of the n;; and the fact that M is isotropic that (mj;,m; ;) = k.
Moreover, one computes that for all pairs j > k:

(mi ;miy) = (nij,mix) + <Z Cj,emé,zynz’,k> + <nw > Ck,emé,e>

i<j i<k
!
= Cjk + (Cim; g, Nik) = Cjk — ¢ = 0.

Similarly,
(mijmi ;) = (nijnag) + (cjmi j,mig) + (nag, ¢jmg ;)
= 2¢jj — ¢jj +7(cj5) = 0.
Thus, M/ has all the desired properties. O

Corollary 5.6. The submodule P has a complementary totally isotropic isomorphic
submodule in R.

Proof. By Lemma 5.5, there is a direct sum decomposition of R as a Q[H]-module:

V4 V4
R=Q¥ e @M =¥ e @M e M)

i=1 i=1
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where M/ and M/ are isotropic and M, = = PN M;. Similarly, Q% N P = QY and
there is a comphmentary 1sotroplc subspace B isomorphic to QY. The submodule
complementary to P is B & (EB@ L M. 0

6 The Representation p and the Image of the Handlebody Group

We now provide more details about the representations pgr . As mentioned in the
introduction, we will work with Aut(7,)" = Mod (2, ) instead of Mod(%,), and
at the end (Section 8.2) we will use (virtual) arithmetic quotients of the former to
obtain (virtual) arithmetic quotients of the latter. As in the previous section, let
p: Ty — H be a ¢-redundant surjective homomorphism, and let S be the kernel
of the induced map p’ : F;, — H. We have the following commutative diagram and
short exact sequences.

1 R T, 42— H 1

«—
—
<

We set
Ty ={f € Aut(Ty)" [po f=p}.

Note that if f € I'yj, then it follows automatically that f(R) = R. For such f,
we can restrict the automorphism to R and then project to an automorphism of
the abelianization R. This, in turn, induces an automorphism of R. Denote this
map as pgyp : U'gp — Aut(R). For the remainder of this section, we will suppress
the subscripts H and p, so henceforth we fix some p and H, and set p = pg, and
I'=Tpp.

As we have seen, R has a Q[H]-module structure, and this is preserved by such

f
LEMMA 6.1. The image p(I") lies in Aut@[H](]:Z).

Proof. Let f € T, and let f be the induced action of f on R. It suffices to check
that f commutes with the action of H. Suppose r € R and 7 € R is its {its image in the
quotient. For any h € H, the action on f(7) = f(r) is h - f(F) = hf(r)h—1. Since
f €T, it follows that f is a trivial automorphism mod R, and so rof(h) = h for
some 79 € R and

hf(r)h=1 = rof(hrh— Drgt = f(hrh=1t) = f(h - 7). O

To show that p(f) additionally preserves the form (—, —), we appeal to a topo-
logical reformulation. Interpreted in a topological setting, the homomorphism can
be viewed as lifting the homeomorphisms to the cover and using the induced action
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on the first homology group. Let us be more precise. Suppose * is a point in the fiber
over x € ¥ for the cover ¥ — X. For a homeomorphism ¢ € Homeo(3, %), the lift
of ¢ is the homeomorphism ¢ fixing  such that ITo » = ¢ o II where I : ¥ — ¥ is
the covering map. The homeomorphism ¢ will lift precisely when the induced action
of ¢ on 7 (X, *) preserves R = 771(53, %), i.e. its mapping class is an element of I'.
Moreover, this lifting induces a well-defined homomorphism I' — Mod(f), ). Recall
that R is naturally identified with H(2,Q). If f € T and f € Mod(%, ¥) is its lift,
then p(f) = f. where f, is the induced action on Hy(%, Q). We can now establish
the following.

LEMMA 6.2. The action of p(f) preserves the sesquilinear form (—, —) for all f € T.

Proof. By the above discussion, p(f) is equivalent to f; which is the action induced
by the orientation-preserving mapping class f . Since such a homomorphism preserves
(—, —)sp, and, in addition, p(f) acts by a Q[H]-automorphism by Lemma 6.1, it must
preserve (—, —).

Since the image acts by Q[H]-automorphisms, it decomposes into actions on each
isotypic component. Consequently, we obtain representations

pi = prpi: L — Auty, (M;, (—, —))
by projecting the action.

6.1 Previous results for automorphisms of a free group. Here, we recall
a theorem from [GL09] which describes the image of Aut(F),) for a representation
analogous to p. We will use this result to show that the image of the handlebody
group maps (virtually) onto the O-points of the Levi factor of a parabolic subgroup
of Auty, (A?g ~2_ (=, =)). The essential connection between the two is that Map(H, %)
surjects onto Aut(F,) via the action on its fundamental group.

We set up some additional notation and define some new terms. For any group
X and subgroup Y, we set

Aut(X[Y) = {f € Aut(X) | f(¥) =Y}

Moreover, for Y normal, let Aut’(X|Y") be the subgroup of Aut(X|Y) consisting of
automorphisms acting trivially on X/Y. Note that in this notation I' = Aut(T})* N
Aut!(T,|R). We have a homomorphism n = ng, : Aut’(Fy|S) — Ath[H](S) defined
similarly to p; namely restrict the automorphism to S, project to the abelianization
S, and take the induced map on S =5y Q.

By Gaschiitz’s theorem (Theorem 2.1), § = Q[H]9~! & Q. Consequently, for each
i, we obtain, via projection, a representation

i - Aut!(F,|S) — Aut g, (A7) = GL,_1(A%).

Recall that A; is simple and isomorphic to Mat,,, (D;) for some division algebra D;
and integer m;. Thus, we can furthermore identify the target space as follows.

GLg-1(A7") = GLg—1(Matyn, (Di)) = GL(g_1)m, (D;").
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The special linear group SLy_1), (D;”) is the group of matrices C satisfying nrdg /L

(C) =1 for B = Endp, (DY),

Now, suppose K is some number field, and suppose D is a finite-dimensional
K-algebra. Then a subring R C D is an order if it contains a K-basis of D and it
is a finitely generated Z-module. Recall that A; is finite-dimensional over K;, (the
7-fixed subfield of its center), and so D; is a finite-dimensional K;-algebra. The next
theorem is a direct consequence of Theorem 5.5 of [GLO09].

Theorem 6.3 (Grunewald—Lubotzky). Keeping notation as above, if g > 4, then
there exists an order R; of D} such that the intersection n;(Aut*(Fy|S)) NSLy,, ;1)
(Ri) is of finite index in SL,,, (;—1)(Ri)-

i

REMARK 6.4. Theorem 5.5 in [GL09] is proved for g > 4. However, as explained on
page 1592 there, it is also true when g = 3 in many cases, e.g. if m; > 1. Moreover,
even if m; = 1, the image of 7; contains finite index subgroups of the upper and
lower unitriangular subgroups of SL,,,. (g_l)(Ri). The issue is that it is not clear there
that these unitriangular subgroups generate SL,,, (g,l)(Ri). But in any event, they
generate a Zariski dense subgroup.

6.2 Structure of the image of the handlebody group. Here, we will ana-
lyze the image of the handlebody subgroup Map(H, *) of Mod(X, *). The handlebody
group naturally has a homomorphism to Aut(Fy) via the action on the fundamental
group of H. We define the finite index subgroup

A =T NMap(H, *).

We will show that the image of A under p; block uppertriangularizes, and fur-
thermore that the blocks on the diagonal range over a wide variety of matrices. More
precisely, we have the following result. Similar to Section 3, we set C* = (7(cj;)) for
any matrix C' = (¢;;) € Mat,, (A;”). We define the parabolic subgroup of G

*\—1
P= { <(CO) g) | C,E € Mat,_;(A?) and E*C = C*E} .

Let pr: P — GLy_1(A;") be the homomorphism

(@) E) e

PROPOSITION 6.5. After identifying Aut 4,(M;) with GLog,_1)(A7”

3
basis mj 1, ...,m; , q,m}y,...,m{, 4 from Lemma 5.5, we have

pi(A) S P.

Moreover, if g > 4, then there is an order R; of D{¥ such that pr(p;(A)) is a
finite index subgroup in SL,,,,—1)(R;). If g = 3, then pr(p;(A)) is Zariski dense in
SLmI(gfl)(RZ)

) via the ordered
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The first part of the proposition is essentially equivalent to the following lemma.
LEMMA 6.6. The following is a well-defined commutative diagram.

! !

Aut!(Fy|S) ——  Autgu(S)

Proof. Note that A can project to Aut’(F,|S) since Map(H, *) preserves ker(¢) and
I lies in Aut’(7y|R). In addition to commutativity, we have to establish that p(A)
preserves the subspace P. We translate parts of the diagram into topological lan-
guage where it becomes the following:

Map(H, ) NT —2— Autg (Hi (2, Q)|P)

l l

Aut!(F,|S) —— Ath[H}(Hl(’):{7Q))

We prove commutativity in two steps. First, we can lift elements from Map(H, *)
to Map(H, %). and properties of lifts and the fact that S = 71 (H, %) implies commu-
tativity in the following diagram.

Map(H,*)NT _fift | Map(?jl,i)

| !

Aut!(Fy|S) ——  Aut(S)

Since elements of Map(?jl7 %) preserve P, the following diagram is well-defined
and commutative.

Map(H, %) —— Aut(H(,Q)|P)
Aut(S) —— Aut(H;(H,Q))

Putting the diagrams together establishes the Lemma. O

This establishes the block diagonal form claimed in Proposition 6.5. Proving
Proposition 6.5 is now a matter of combining some of the above results.

Proof of Proposition 6.5. Let v € A. Lemma 6.6 implies that p;(y) preserves M/ and
so p;i(7y) block diagonalizes. To show that p;(y) lies in P as defined, it suffices to show
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that any element of G preserving M has diagonal entries (C*)~!, C for some matrix
C € Mat,_1(A°). Notice that relative to the basis, (and multiplying in Mat(—"))

ay
0 I
<(a17 R a2(g—1))a (bl, ceey b2(g—l))> - (T(bl) s T(bQ(g—l))) (—I O)
a2(g-1)

Consequently any matrix < 0 C> preserving (—, —) must satisfy

() (506 e)=(0)

This implies F = (C*)~!, and C*E = E*C.
Theorem 5.1 implies that A surjects onto Aut’(F,]S). Lemma 6.6 implies that
pr o p; = 1;, and so Theorem 6.3 and Remark 6.4 finish the proof. O

7 Generating Unipotents in the Image

Our goal in this section is to prove that the image of pp p; contains the finite index
subgroups of the unipotent subgroups N *(9) and N~ (9). We begin in this first
subsection by finding two concrete examples of unipotents in the image of py ;. As
before, we fix H and p and drop them from the subscripts of p and T'.

7.1 Two unipotent elements. Let a,b be the simple closed curves on X as in
Lemmas 5.2 and 5.3. The tightly controlled unipotents are the images of the Dehn
twists about a and b which we denote by T, and T}.

/ " . / / " "
LEMMA 7.1. Let M;, M;" be the modules and MG 15y My g g and MG sy My g g

their respective free A;-bases given by Lemma 5.5. Then, with respect to the ordered

. / / " 1
basis my 1. .., MG g 1, MG 15, MG g1,

I e
Pi(Tb):<O j—’l>,

_ I 0
pi(Tal): (611 I>’

where e1 1 € Mat,_1(A;) is the matrix with 1 in the upper left corner and 0 in all
other entries.

Proof. We prove it for T, 1; the proof for Ty is similar. Let ¢ be some representative
homeomorphism of T, which fixes *. The lift ¢ is precisely the twist ¢ on each copy
3, of ¥. Le., the lift in Mod(X, %) is simply the composition of twists [,y Tu,-
Notice that since all the twists have mutually disjoint support, all the T, commute
with each other, so the order of composition is irrelevant. It is a standard fact (see
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e.g. [FM12, Proposition 6.3]) that the action on homology Tj, of a single Dehn twist
Ts on a homology class v € Hi(X,Q) is

T6*(U) =v+ <U) [5]>Sp[(ﬂ

where [0] is the homology class of 4.

We now simply compute our action. Notice that Ty, «([an/]) = [an/] for all pairs
h # h' as ay,ap are disjoint, and so we do not “accumulate” any extra terms in
composing. L.e. the composition of the Ty, . applied to any v € Hl(i, Q) is

HheH T, (v) = v+ ZheH@a [ah]>sp [an]
=v+ ZheHw? h - [al >Sph : [al]
= v+ (v, [a1])]a].

By the choice of basis, (v, [a1]) is —1 when v = b; and is 0 when v is any other basis
element. Using the inverse Dehn twist then gives us positive 1. O

7.2 The unipotent subgroups Nt and N~.  We again fix some simple com-
ponent A = A; of Q[H] and the corresponding submodule M = M; of R with its as-
sociated sesquilinear form. Also let p = p; = ppr ;. Let us now consider the following
unipotent subgroups of the corresponding group G = Aut (42972, (—, —)) which we
continue to view in terms of the basis from Lemma 5.5. Let us set B = Mat,_1(A%),

and for F = (e;;) € B, define E* to be (7(ej;). For any matrix of the form (é ?)

in G, a straightforward computation shows that £* = E. We set

N+:{<é f) € Mats(B) | E*:E},

N‘z{(é ?) € Mats(B) | E*:E}.

In this section we show that p(I") contains a lattice in each of these unipotent
subgroups. We will produce them by conjugating the elements p(T}) and p(7,, ') by
elements in p(A). Recall from Proposition 6.5 that p(A) consists of elements of the

*\—1
form <( ) E) with E*C' = C*F, and note that the inverse of such a matrix is

0o C

0 -1 ) One can compute that

c* FE* I E\/(CHt E\ (I CEC
0 C! 0 I 0 C) \o 1 '
Recall also from Proposition 6.5 that, if g > 4, for every C' in a finite index subgroup
() E (and
0o C
for g = 3, this is true for every C' in some Zariski dense subgroup of SLy,,—1)(R)).

of SL,,(4—1)(R), the image p(A) contains a matrix of the form
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Hence, our interest is in the set of matrices C*EC where £ = E* and C €
SLm(gfl) (R)

First, we will understand the action of SL1(B) = {C € B | nrdg,.(C) = 1} on
N ={E € B| E* = E} given by C - E = C*EC. Recall that L is the center of A
and hence B, and that K is the field fixed by 7 and hence by *.

LEMMA 7.2. The above action of SL;(B) on N is irreducible over K.

Proof. Suppose 7 (hence *) is of the first kind, and choose some isomorphism ¢ :
B ®g C — Mat,(C) (for appropriate n) so that * goes over to the involution v
in (1) or (2) of Lemma 3.6. Applying ¢ to N ® C identifies N ®x C with N’ =
{E € Mat,(C) | v(E) = E}. Let ¢’ be the composition of B — B @k C followed
by ¢. Now, ¢'(SL1(B)) consists of the K-points of a form of SL, in SL,(C), and
so ¢/(SL1(B)) is Zariski dense in SL,(C) by [BS66, Theorem A] (see also [AB64] or
[R57]). Thus, if SL, (C) acts irreducibly on N, so does ¢'(SL1(B)), and so SL;(B)
acts irreducibly on N. We will show that for any nonzero E € N’, the SL,,(C)-orbit
spans N'. Since scaling E does not affect the span, it is equivalent to prove this for
the GL,,(C)-orbit.

In case (1), we have v(C) = C*, and N’ is the set of symmetric matrices and
the action is C' - E = C'EC. This action is well-known to be irreducible. In case
(2), we have v(C) = JC'J~!. Notice that J~! = J* = —.J. The set N’ consists
of those matrices E such that JE'J~! = E which is equivalent to J 'E being
skew-symmetric. Then, we have

JYC-E)y=J"1 JC' T EC = CY(JE)C.

Consequently, this case reduces to the fact that the action E — C*EC on the set
of skew-symmetric matrices F is irreducible. The irreducibility of this action is also
well-known.

Suppose now that 7 is of second kind. We use a proof very similar to the previous
cases. By Lemma 3.6, there is an isomorphism ¢ : B&xC — Mat,,(C) x Mat,,(C) (for
appropriate n), so that * goes over to the involution v defined by v(C, D) = (D!, C?).
Thus, the homomorphism ¢ identifies N @ C with N’ = {(E, E') € Mat,(C) x
Mat,, (C)}. Let ¢’ be the composition of B — B @k C followed by ¢. By [BS66,
Theorem A], the image ¢'(SLi(B)) is Zariski dense in SL,(C) x SL,(C). Just as
before, SL;i(B) acts irreducibly on N if SL,(C) x SL,(C) acts irreducibly on N’. In
this case, the action on N’ is

(C7 D) ’ (Eu Et) = (Ctv Dt)(E7 Et)(Dv C) = (CtED7 DtEtC)
It is clearly irreducible. O

We can now show that our image contains a finite index subgroup of N (9) =

GO)NNT.
LEMMA 7.3. The intersection p(A) N N (9) is of finite index in N (9O).
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Proof. Let F = p(A) N G(O). We show that the subgroup of the (abelian) group
NT(9) generated by conjugates of é 61]’1 by F is of finite index in N7 (O) (Note
that by construction, this unipotent matrix lies in p(A)). Using Proposition 6.5, this
is equivalent to the subgroup of N(9O) generated by the orbit of e; ; under the action
of the finite index subgroup G = pr(p(A)) of SLm(g_l)(R). By Proposition 6.5, the
group G is Zariski dense in SLi(B) = SLy—1(A). Consequently, since SL;(B) acts
irreducibly by Lemma 7.2, so does (G, and thus the group generated by the G-orbit
of ey is of finite index in N (O).

Using this lemma, we can now see that p(A) contains block diagonal matrices.
In fact, we can show the following.

LEMMA 7.4. Assume g > 4. The image p(A) contains a finite index subgroup of the
following group:

cH~1 0
{<( 0) C) € Matq(B) | C € SLm(g_l)(R)}
where R is the order from Theorem 6.3.

Proof. Let F = p(A)NG(O) which necessarily lies in P(9) = PNG(O) by Proposition
6.5. Recall that unipotent subgroups have the congruence subgroup property, so, by
Lemma 7.3, there is some ideal a of O such that p(A) NN (9) contains N'*(a) (see
e.g. page 303 of [R04]). After passing to a finite index subgroup F’ of F, we can
*\—1 *
(CO) g) € F', then (é EI> € N'*(a) and therefore (é _CI E>
also lies in N'*(a). The result then follows from Proposition 6.5 and the computation:

(cH™t B\ (I —-C*E\ _[(CH1 0 -
0 C 0 1 N 0 c/
REMARK 7.5. For g = 3, a similar argument using Remark 6.4 instead of Proposition
6.5 will show that p(A) contains a Zariski dense subgroup of

ensure that if <

{ <(C’;))_1 g) € Maty(B) | C € SLm(g_l)(R)} '

The block diagonal matrices act in similar ways on N (9) and N~ (9) by conju-
gation. Applying the argument of Lemma 7.3 but using the block diagonal matrices
from Lemma 7.4 and Remark 7.5 in place of p(A) N G(O), we obtain the following
lemma.

LEMMA 7.6. The intersection p(I') NN~ (D) is of finite index in N~ (O).
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8 The Image of the Mapping Class Group

We are now ready to finish the proof of our main technical result Theorem 1.6,
and then to deduce Theorem 1.8 which outlines the general procedure of obtaining
arithmetic quotients of the mapping class group. In the next section, we will apply
the procedure to specific examples of H and r to deduce Theorem 1.2, its corollaries,
and Theorem 1.3.

8.1 Finishing the proof of Theorem 1.6. First,let ' =1y, p = ppp, G =
G, and Gl = g}ﬂ We can now use the results of Lemmas 7.3, 7.4, 7.6 to get the
following. Let G be the algebraic group Aut4(A2972, (—, —)). It is a reductive group
but not necessarily semisimple. Let G be the elements of reduced norm 1 over L.
This subgroup G' is semisimple.

First, let us see why a finite index subgroup of I' must map into G(9) =
Aut,_-;(DQg 2, (=, =)). Recall that p is originally defined by the action of I' < Aut(7}) "
on R = R/ [R R] which is induced by the action of I on R < T,. After tensoring
R by Q we obtain R = Q[H]%~2 & Q2 and the action of I' projects to an action
of A?972 preserving (—, —). Since I' preserves R C R, it also preserves R N A20-2
which is a lattice in the K-vector space 42972, Thus, some finite index subgroup of
I' maps into G(O).

Recall that P is the parabolic subgroup of G which consists of those elements
preserving the submodule M’ in the notation of Section 5. Let P! = P N G!. Then
P! is the normalizer of the unipotent subgroup N'*. The group P! is a semi-direct
product of its Levi factor £ and its unipotent radical, which is equal to N'". The
Levi factor £ is isomorphic to GLg—1(A%) = GLy_1)p, (D). Let T be the maximal
K-split torus of £ given by diagonal matrices with entries in K; in particular, 7' is
isomorphic to (K*)™9~1 Viewing £ as block diagonal matrices, T is also a maximal
K-split torus for G'. le. the following is a maximal K-split torus for Gl

(o &) reer)

(see classification in [T66, Table II]). Let ® be a K-root system with respect to this
torus. Then for every a € ®, the corresponding root subgroup lies either in N*, N,
or L.

Now, when g > 4, Lemmas 7.3, 7.4, 7.6 imply, therefore, that for every a € ®, the
intersection of p(I") with the root subgroup is commensurable to the integral points
of the K-root subgroup. Recall also that unipotent subgroups have an affirmative
answer to the congruence subgroup problem [R04], and hence a finite index subgroup
of the root subgroup contains a congruence subgroup of it. For g = 3, we can still get
the same conclusion even though Lemma 7.4 is not valid, as explained in Remark 6.4.

We are now in a position to use Theorem 1.2 of [R92] which asserts that exactly
in such a situation the group generated by congruence subgroups of U, as o ranges
over @ is an arithmetic group, i.e. of finite index in G!(9) (the theorem requires that
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the Q-rank of G! is at least 2, and this is always true when g > 3). We thus deduce
that p(T') contains a finite index subgroup of G!(9). By Proposition 3.9, G1(9) is
of finite index in G(9), and so p(T") and G'(O) are commensurable.

8.2 Passing to mapping class groups without fixed point. = We have so far
only proven results for Mod (3, ). We now show how the homomorphism p induces
a map on Mod(X). Let € : Mod(X, %) — Mod(X) be the natural map that forgets
the fixed point. The following proposition says that after passing to a finite index
subgroup, p factors through e.

PrOPOSITION 8.1. Let p : T, — H be a ¢-redundant homomorphism and pp, :
Lwp — Autgm) (R, (—, —)) the corresponding homomorphism. Then, there is a finite
index subgroup F’HJ) < Iy so that pyplry, = factors through e.

Proof. We recall the Birman Exact Sequence for Mod (X, %): ([FM12,B74])
1 — T, 5 Mod(%, *) = Mod(X) — 1.

Here T, maps to the “point-pushing” mapping classes and each c(«) for o € T} acts
as conjugation by « on the fundamental group. For p to factor through € on some
subgroup I'" < Mod(X, *), we need €¢(I" N ¢(Ty)) to act trivially on R/[R, R]. Hence,
it suffices that I'" N ¢(T}) C ¢(R).

Let a € T, and suppose c(a) € I'gp. Since R is of finite index, there is some n
such that o” € R, and so ¢(a)" acts trivially on R/[R, R] by conjugation. Thus,
p(Crp N e(Ty)) consists entirely of torsion elements. The image p(I'm,) lies in
Aut(R, (—, —)sp) which is isomorphic to Sp(2 + (29 — 2)|H|,Z) and contains some
finite index torsion-free subgroup G. Thus, F’H7p = p~YG) N Ty is the required
subgroup. O

8.3 Producing virtual quotients from irreducible representations of
finite groups.  Theorem 1.6 and Section 8.2 establish Theorem 1.8 which presents
a procedure to obtain arithmetic quotients and which we summarize now. This the-
orem will be convenient for use in Section 9 and possibly the future.

Let ¥4 be a closed surface, let H be some finite group generated by d(H) < g
generators, and let A be a simple component of Q[H|. This is the required input for
the theorem. By Lemma 3.2, the standard involution 7 on Q[H] defined by h + h~1
restricts to an involution on A which, by abuse of notation, we will also call 7.

Set M = A?72 with free basis 1,...,24-1,Y1,...Yg—1 and let (—,—) be the
skew-Hermitian form sesquilinear relative to 7 such that (z;,y;) = &, (yi, z;) =
—0ij, (xiyz5) = 0, and (y;,y;) = 0. Let G = Auta (42972 (—, —)), and set Q4 =
GHO) = G N Autp(D?972 (—, —)) where O is the order in A which is the image of
Z[H].

To obtain our representation, we need some ¢-redundant homomorphism p :
T, — H. Let ¢ : T, — F; be the map on fundamental groups induced by the
inclusion ¥, — H,. Since d(H) < g, there is some epimorphism p’ : F; — H which
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maps at least one free generator to the trivial element. The composition p = po¢is
¢-redundant. Recall that R is the kernel of p and R = R/[R, R]. From the discussion
in Section 6, the following subgroup of Mod(X,, ) = Aut(T,)™"

L= {feAut(Ty)" [po f=p}

has a well-defined action on R, hence on R = Q[H]*~2 @ Q?, and hence on A%92,
This induces a homomorphism I' — G by Lemmas 6.1 and 6.2. By Theorem 1.6,
there is a finite index subgroup I" < I" and a homomorphism p : IV — Qg 4 with
finite index image. By Lemma 8.1, there is a finite index subgroup I'gy, 4 < Mod(%,)
and a representation pg 4 : 'y a — Qg 4 with finite index image. This establishes
the theorem.

8.4 Some remarks on the uniqueness of pg .. Notice that in the above
Qp = Qp 4 is uniquely determined by H and r, but the representation py, = py.a
depends on the choice of the surjective representation p : T, — H. One way to get
other epimorphisms p is via the action of the group Aut(7}) x Aut(H) by (v, ¢)-p =
popo1~l. The corresponding induced representations p are “equivalent” in the
following sense. Let inn(v)) : Aut(7,) — Aut(7,) denote the inner automorphism
inn(¢)(f) = ¢ f1p~1. The proof of the following lemma is elementary, so we omit it.

LEMMA 8.2. Suppose p1 : T, — H is some epimorphism and ps = op1p~! for some
(1, ) € Aut(T,) x Aut(H). Let R; = ker(p;), let R; = (R;/[Ri, R;]) ®z Q, and let
PHp: : UHp, — Aubgpm (R;, (—,—)) be the corresponding representation as presented
in Section 6. Then, there is an isomorphism e : Ath[H](Rl) — Ath[H}(Rg) such
that py p, = €0 pHp, o inn(1).

Recall that our maps Ty, — H are ¢-redundant, so a natural question is: how
transitively does Aut(7y) x Aut(H) act on them? Suppose p1,p2 : T, — H are
respectively ¢1-redundant and ¢o-redundant, and p!, p, : F; — H are the respective
induced maps. Recall from the introduction and Section 5 that all maps ¢ : T, — Fj
are induced by some identification ¥ = 9H. This fact combined with Theorem 5.1
implies that p; and po are are in the same Aut(Ty) x Aut(H)-orbit if p| and p, are
in the same Aut(Fy) x Aut(H )-orbit.

The question then reduces to the transitivity of the Aut(F,) x Aut(H) action on
redundant homomorphisms F,, — H. In [L11, Conjecture 6.3], it was conjectured
that this action is transitive. This is known to be true when H is solvable [D70] and
when H is simple [G77,E93] (see also [L11, Theorem 6.6]). If the conjecture is true,
then our homomorphisms pg, depend only on (H,r) up to the above equivalence.

A more general problem is to understand the Aut(Ty) x Aut(H)-orbits of all
epimorphisms, Epi(7T,, H), not just those which are ¢-redundant. One obstruction
to transitivity is Ho(H,Z). Given an epimorphism T, — H, there is an induced map
Hy(Ty,Z) — Ha(H,Z) which specifies a well-defined element of Hy(H,Z)/ Out(H)
up to the Aut(7,) x Aut(H)-action. Those epimorphisms 7, — H factoring through
F, and, in particular, ¢-redundant homomorphisms induce the (Out(H)-orbit of
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the) trivial element in Hy(H,Z)/ Out(H). Theorem 6.20 of [DT06] shows that for
any fixed finite group H and sufficiently large g, the Aut(7,) x Aut(H)-orbits of
Epi(Ty, H) are in bijective correspondence with Hy(H,Z)/ Out(H). We make the
following conjecture.

CONJECTURE. If H is finite and g > d(H), then the Aut(Ty) x Aut(H)-orbits of
Epi(T,, H) are in one-to-one correspondence with Hy(H,Z)/ Out(H ).

Note that for any surjective homomorphism p : T, — H and irreducible Q-
representation r of H, there is an associated representation pp, even if p is not
¢-redundant. The assumption that p is ¢-redundant is only necessary for us to
establish that the image is arithmetic. If the above conjecture is true, then, up
to the natural equivalence, pp, is uniquely determined by the pair (H,r) and an
element of Ho(H,Z)/ Out(H).

8.5 Remarks on property (7') and Theorem 1.6 for the case g = 2.

Another remark which seems to be worth mentioning is that, except for the case
g = 2, all the virtual arithmetic quotients we obtain for Mod(3,) are lattices in
higher-rank semisimple Lie groups (whose simple factors are of R-rank >2) and
hence have Kazhdan’s property (7). We do not know if this is the case for the
analogous virtual quotient of Aut(F),) constructed in [GL09]. There it is possible
that the image has an infinite abelian quotient. See [GL09] for a detailed discussion.

8.6 Image of subgroups in the Johnson filtration. As promised in the
introduction, we show that the groups in the Johnson filtration are “very different”
from the new Torelli groups we define here. Precisely, we prove the following.

PROPOSITION 8.3. Assume g > 3. Let H be a nontrivial finite group, r a nontrivial
irreducible Q-representation of H, and let I' = I'y, and p = pp, be as in Theorem
1.8. Let ¥ = g, = ker(pn,») and J any element in the Johnson filtration of Mod(X).
Then J - ¥ is of finite index in Mod(X).

Before proving the proposition, note that this implies pg(J) has finite index
image in Q, when H is nontrivial. Thus, our main results imply also that the clas-
sical Torelli group and the subgroups in the Johnson filtration have a rich collection
of arithmetic quotients.

Proof. First, suppose that J is the classical Torelli group, i.e. the kernel of the
standard homomorphism Mod(X) — Sp(2g,Z). Let 3’ = I NT. Then 3’ and ¥ are
both normal in I". Consider J-%/J which is a normal subgroup of I'/7J, a finite index
subgroup of Sp(2¢,Z). By Margulis’ normal subgroup theorem [M91, Theorem (4”)],
it is either finite or of finite index. In the latter case, it follows that J - ¥ is of finite
index in Mod(X).

Suppose then that J-T /7 is finite. Then T = JNT is of finite index in T. Consider
now ¥J / TinT / . The latter group is commensurable to a higher rank lattice, so as
above ’EJ/ % is finite or of finite index. If the latter holds, we are done. If the former
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holds, then JN T is of finite index in J, and so ¥ and J are commensurable, but that
is impossible.

Now, let J be any group in the Johnson filtration and let Jy be the classical Torelli
group. Let J) = I'NJp and 3’ = I' N J. The quotient Jo/J is nilpotent, and thus
J(,/7' is nilpotent. Let IT : I' — I'/T be the quotient map. The above two paragraphs
show that II(J() is of finite index in I'/%. Thus, I1(3())/IL(J’) is a nilpotent quotient
of a higher rank lattice and hence finite. This implies that J - ¥ is of finite index in
Mod(%). O

9 Finite Groups and Arithmetic Quotients

As explained in the introduction, our main result gives us a way to associate a virtual
epimorphism p from Mod(X) to an arithmetic group € from the choice of a finite
group H and irreducible Q-representation r or, equivalently, a simple component A
of Q[H]. In this section, we present various kinds of arithmetic groups which arise
as we vary H and r.

In the first section, we prove Corollary 1.4. While this is formally a corollary
of Theorem 1.2 as stated, our actual proof must proceed by deducing the corollary
directly. Then, for genus 2, the various examples in Theorem 1.2 actually follow from
the “corollary”. Note, then, that for genus 2, we do not obtain these virtual arith-
metic quotients of Mod(X2) by various representations pg ;. In the next few sections,
we prove Theorem 1.2 by listing the finite groups H and irreducible representations
r, establishing the requisite properties and determining the arithmetic group Qg
with the use of results in Section 4 when necessary. We then prove Corollary 1.5
using example (a) of Theorem 1.2. In the final section, we discuss more generally
the question of what simple Q-algebras with involution can arise as factors of Q[H]
and deduce Theorem 1.3.

9.1 Proof of Corollary 1.4 and Theorem 1.2 for g = 2. Weset H =7/27
and we let p : Ty — Z /27 be some surjective ¢-redundant map. Here, Q[H] = Q& A
where A = Q as a Q-algebra and where as a Q[H| module, the nontrivial element
of H acts on A by multiplication by —1. Note that the standard involution 7 on
Q[H] is trivial, and hence its restriction to A is trivial. Thus, Aut(A42972 (- —)) =
Sp(2,Q) = SL(2,Q). From Lemma 7.1, it follows directly that p(I') contains the

generating elements
11 1 0
0 1 1 1)

Moreover, as p(I's,) preserves R C J%, there is some finite index subgroup of ',
whose image is Sp(2,Z).

Because of the corollary, Mod(Xz) virtually surjects onto a finitely generated free
group, and thus onto all free groups of finite rank. Since all the arithmetic groups
in Theorem 1.2 are finitely generated, Mod(32) virtually surjects onto them.
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9.2 The symmetric and alternating groups. In this section, we describe
an irreducible representation for the symmetric group and alternating group. Let
Sym(m + 1) denote the symmetric group on m + 1 letters and Alt(m + 1) the alter-
nating group on m+1 letters. The symmetric group has an irreducible representation
(sometimes called the standard representation) defined as follows. There is an obvi-
ous action of Sym(m + 1) on Q™*! acting by the permutation matrices. The vector
w=(1,1,...,1) is a fixed vector, but Sym(m+1) acts irreducibly on the orthogonal
complement V' = w™. The representation r : Sym(m + 1) — GL(V) is irreducible
and moreover, the induced homomorphism 7 : Q[Sym(m +1)] — Endg(V) is surjec-
tive, and so the corresponding simple factor in Q[Sym(m + 1)] is A = Mat,,(Q).
Since the center is L = Q, the fixed field K under 7 is K = L = Q. Since
A®g R =A®gR = Mat,,(R), by Proposition 4.3, 7 is of first kind and orthogonal
type.

For m > 3, the restriction r : Alt(m + 1) — GL(V) is irreducible, so A =
Mat,,,(Q) is a simple component of Q[Alt(m + 1)] also. For the same reasons as
above, the induced involution 7 on A is of first kind and orthogonal type. For all
m > 2, a 3-cycle v and m-cycle 6 for m odd (resp. m+ 1-cycle § for m even) generate
Alt(m + 1); moreover, we can choose 0,7 such that Alt(m + 1) is generated by all
elements of the form 6*~y5~*.

9.3 Example (a) of Theorem 1.2. In this section, we establish example (a)
of Theorem 1.2 for genus g > 3. Here and in the following three sections, we use our
main result, Theorem 1.8, and so here, and in the following sections, we generally
present the following:

e the finite group H and a demonstration that d(H) <2 < g,
e an irreducible representation r of H and/or the corresponding simple factor A

of Q[H],

e an identification of a finite index subgroup of the arithmetic group Qg 4.

For example (a), let H = Sym(m + 1). It is well-known that Sym(m + 1) is
generated by two elements. We take r to be the standard representation, so the
corresponding simple factor A is Mat,,(Q) as explained in Section 9.2.

We now describe Qg 4. Let G = Aut4(A%972,(—, —)), and let o be the involution
of End4(A2%972) associated to (—, —). Since 7 is of orthogonal type, the involution
o associated to (—,—) is of symplectic type by Lemma 3.5. The endomorphism
ring End4(A%97?) is isomorphic to Mato(,_1)(A%) = Mato,,y—_1)(Q). Over fields K
of characteristic 0, all symplectic involutions of Matg(g,l)(K ) are equivalent, and
so there is an isomorphism ¢ : Enda(A2972) — Maty,;,(4—1)(Q) sending o to the
standard symplectic involution. The intersection of ¢(G'(9)) and Sp(2m(g — 1),Z)
is of finite index in the latter. By Theorem 1.8, there is a virtual epimorphism of
Mod (%) onto Qg 4 = G1(9) which, up to finite index, is isomorphic to Sp(2m(g —
1),7Z). This establishes example (a) in Theorem 1.2.
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9.4 Example (b) of Theorem 1.2. The required finite group will be H =
Dih(2n) for m = 1 and H = Alt(m + 1) x Dih(2n) for m > 3 where Dih(2n) is the
dihedral group of order 2n which has presentation

Dih(2n) = (z,y | 2" =1, y* =1, yay ' =z~ 1).

For m = 2, we require a group containing Dih(2n) which we will describe below (We
remark that for g > 4, one can use H = Sym(m + 1) x Dih(2n) for all m; however
this choice is not suitable for ¢ = 3 as the group is not generated by two elements
for n even).

We first establish (b) in the case of m > 3. The group H is generated by (v, y)
and (0, z) for the following reasons. Both (,1) and (1,y) are powers of (v,y). By
conjugating (v, 1) by powers of (, ), we obtain all elements of the form (6¥~y5*, 1).
From this, we generate Alt(m+1) x 1, and then clearly (v, y) and (, z) generate H.

We next describe an irreducible representation of Dih(2n). Let ¢ be a primitive
nth root of unity, and let @« — @ denote the order 2 automorphism of Q(¢) defined

by ¢ — ¢~ L Set
5={(5 D) 1ascao}

The group ring Q[H] surjects onto the Q-algebra B via the homomorphism § defined

by
w=(53) -0 3)

The center L of B is equal to the subfield of Q(¢) invariant under ~, i.e. L = Q(¢)™.
Recall that the induced involution, call it v, on B is the unique involution satisfying
v(3(z)) = 8(2)~! for all z € Dih(2n). It follows that the involution is the one given by
conjugate transpose of the matrix, and so v is of first kind. Moreover, dimz,(B) = 4
and the v-fixed vector subspace is 3-dimensional, so v is of orthogonal type.

We can describe B further. Recall that B is a matrix ring over a division algebra
with center L. Notice, however, that B is not a division algebra, and since it has
dimension 4 over L, it follows that B = Mata(L).

We now describe the simple factor A of Q[H] and the involution 7. Let § :
Q[Alt(m +1)] — Mat,,(Q) be the standard representation from Section 9.2, and let
v’ be the involution of Mat,, (Q) induced by the standard involution of Q[Alt(m+1)].
Set A = Mat,,,(Q) ®qg B. There is a surjective homomorphism 7 : Q[H| — A defined
by 7(z,w) = §'(2) ® §(w) on (z,w) € H = Alt(m + 1) x Dih(2n). The involution 7
of A induced by the standard involution of Q[H] satisfies

Tz ®@b) =1V (z) @ v(b).

It is straightforward to check that 7 is of first kind. Let V', V™ (resp. W, W ™) be
the +1- and —1-eigenspace of / (resp. v). Then, the +1-eigenspace of 7 is V1 ®
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W+ + V- ® W, and, after counting dimension, one finds that this eigenspace is
more than half the dimension of A. Consequently, 7 is of orthogonal type.

In total, there is a surjective homomorphism s : Q[H] — A = Mat,,(B) =
Matay, (L) with induced orthogonal involution on Matg,,(L). Arguing as in the Sec-
tion 9.2, we find that, up to finite index, Qg 4 = G'(9) is isomorphic to Sp(2 -
(2m)(g—1),0) = Sp(4m(g — 1), O). Thus, there is a virtual epimorphism Mod (%)
onto Sp(4m(g —1),0).

For m = 1, the simple factor of Q[H] is A = B, and clearly d(H) = 2. The
analysis above applies mutatis mutandis to establish that G(), up to finite index,
is Sp(4(g — 1), ©) and there is a virtual epimorphism Mod(3,) — Sp(4(g — 1), O).

Now suppose m = 2. We construct H as a subgroup of the units in Matq(B).
Namely, let X = 5(z) € B and Y = §(y) € B, and set

X%z 0 0 X2k+ly '
H_{< 0 Z>’<Z o>6Mat2(3)|Z€S(D1h(2n)),kez}.

This is a group which is finite and generated by the following two elements

Y 0 0 X
(o v) (7 )
The inclusion H — Matg(B) induces a homomorphism Q[H| — Maty(B) X A which
is surjective. The induced involution 7 satisfies 7((b;;)) = (v(bj;)). Using arguments
similar to the above, we find that G'(9) is, up to finite index, Sp(8(g — 1), 0) and
there is a virtual epimorphism Mod(X,) — Sp(8(g — 1), O).

9.5 Example (c) of Theorem 1.2. Here, we use the finite group H = Sym
(m+1) x Cyc(n) for m > 2 and H = Cyc(n) for m = 1 where Cyc(n) = Z/nZ. We
first describe an irreducible representation of Cyc(n). Namely, there is an irreducible
representation Cyc(n) — Q(¢)* sending the generator of Cyc(n) to ¢, a primitive
nth root of unity. The corresponding map Q[Cyc(n)] — Q(() is surjective. The
induced involution, v on L = Q(¢) is the unique one sending ¢ to (! which is an
involution of the second kind with fixed field K = Q(¢)*.

Suppose now that m > 2. The group Sym(m + 1) x Cyc(n) has generators (v, 0)
and (6, 1) where ~ is a transposition and ¢ is an m + 1-cycle. The conjugates of (-, 0)
by (9,1) generate Sym(m + 1) x 0, and from there it is obvious that H is generated
by both elements.

Via an argument similar to the one used in Section 9.4, we have a surjective
homomorphism Q[H] — Mat,,(Q) ® Q(¢) = Mat,,(Q(¢)) = A. Since the center is
L = Q(¢), the induced involution on A is of second kind by Proposition 4.3. The
7-fixed subfield K is Q(¢)™.

It only remains to describe Q 4. From the description of (—, —), it is clear that
a matrix F is the adjoint of C' € Matog_o(A) if and only if

()= (e
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where E* is the map defined by (e;;)* = (7(eji)). Thus, the adjoint involution for

(= —) is
Aoy (" é>_10* (50,

Since Matgy—2(A%) = Maty,,;—1)(Q(C)), the involution ¢ is also the adjoint involu-
tion for a nondegenerate Q(¢)-valued Hermitian form (—, —)o on Q(¢)?™9~1 ([K98,
Theorem 4.2]). From the fact that (—, —) has a maximal isotropic submodule, one
can deduce that (—, —)¢ has a maximal isotropic subspace (i.e. of Q({)-dimension
m(g—1)) as well. All Hermitian forms on Q(¢)?™9~1 with a maximal isotropic sub-
space are equivalent (e.g. one can apply the same arguments as in Lemma 5.5), and
so the form (—, —) is equivalent to the form defining U(m(g — 1), m(g — 1), Q(()).

Thus, there is an isomorphism from a finite index subgroup of Qp 4 = G1(O)
to a finite index subgroup of SU(m(g — 1),m(g — 1),O) where O is the ring of
integers in Q(¢). By Theorem 1.8, there is a virtual epimorphism from Mod(%,)
onto SU(m(g —1),m(g — 1),0).

For the case m = 1, a simplified version of the above argument applies, and so
there is a virtual epimorphism Mod(X,) onto SU((g — 1), (g — 1), O).

9.6 Example (d) of Theorem 1.2.  For these examples, we use the finite group
H = Alt(m + 1) x Dic(4n) for m > 3 and Dic(4n) for m = 1 where Dic(4n) is the
dicyclic group of order 4n. The group Dic(4n) has the following presentation:

1

Dic(4n) = (z,y | 2** = 1,9* = 2",y toy = 27 1).

For m = 2, we use a group containing Dic(4n) which we will describe below and
which has a construction similar to that for example (b).

We begin with the case m > 3. The group H = Alt(m+1) x Dic(4n) is generated
by the two elements (v, y) and (J, x). This follows verbatim from the same argument
for Alt(m + 1) x Dih(2n).

The group ring Q[Dic(4n)] has a representation onto a division algebra D defined
as follows. Let ¢ be the primitive 2nth root of unity, and let — denote the unique
order 2 automorphism of Q(¢) sending ¢ + ¢~!. The division algebra is

D= {(_g a) € Mat2(Q(Q)) | o, 8 € @(C)} :

The center L of D is Q(¢)*, and the epimorphism 5 : Q[Dic(4n)] — D is defined on

the generators by
=5 ¢) sw=(_ 4)-

The induced involution, call it v, on D is that involution satisfying v(5(z)) = §(z)~!
for all z € Dic(4n). Thus, in terms of the matrices, v is conjugate transpose, and
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it is of first kind (on D). The fixed subspace of v has L-dimension 1 and D has
L-dimension 4, so v is of symplectic type.

We describe the simple factor A of Q[H]. Let § : Q[Alt(m + 1)] — Mat,,(Q) be
the homomorphism from Section 9.2, and let 2/ be the involution of Mat,,, (Q) induced
by the standard involution of Q[Alt(m + 1)]. Let A = Mat,,(Q) ®g D = Mat,, (D).
There is a surjective homomorphism 7 : Q[H] — A defined by 7(z,w) = §'(2) ® §(w)
on (z,w) € H. The induced involution, 7, on A is equal to v/ ® v. By an argument
similar to the one in Section 9.4, one can show 7 is of first kind and symplectic type.
By Theorem 1.7, G = Auta(A2972,(—,—)) is the L-points (K = L here) of an L-
defined algebraic group whose real form is SO(2m(g —1),2m(g — 1), R). Thus, there
is a virtual epimorphism of Mod(%,) onto Qx4 = G'(9), an arithmetic subgroup
of SO(2m(g —1),2m(g — 1), R).

For m = 1, it is clear that H = Dih(2n) is generated by two elements, and the
above arguments apply mutatis mutandis to show that there is a virtual epimorphism
of Mod(3,) onto an arithmetic subgroup of SO(2(g —1),2(g — 1), R).

For m = 2, we construct H as a subgroup of the units of Maty (D). Namely, let
X =s(x) € Dand Y = s(y) € D, and set

XQkZ 0 0 X2k+1Z '
"= {< 0 z) ’ (Z 0) € Maty(D) | Z € s(Dic(4n)), k Z}.

Like the group H for m = 2 in Section 9.4, H here is generated by two elements,

and the inclusion H — Mata(D) induces a homomorphism Q[H] — Maty(D) L 4

which is surjective. The induced involution 7 satisfies 7((b;;)) = (v(bjs)), and so
7 is of symplectic type. Using arguments similar to the above, we find a virtual
epimorphism onto an arithmetic subgroup of SO(4(g — 1),4(g — 1), R).

9.7 Proof of Corollary 1.5. This follows rather quickly from example (a) of
Theorem 1.2. A finite index subgroup of Sp(2m(g — 1),Z) is mapped onto
Sp(2m(g—1),Z/pZ) for almost all primes p. The latter contains SL(m(g—1),Z/pZ)
and hence contains Sym(m(g — 1) — 1). Now, every finite group G embeds in
Sym(m(g—1)—1) for sufficiently large m. Thus, Mod(%,) has a finite index subgroup
which is mapped onto G.

9.8 Simple components of Q[H] in general. From Theorem 1.8, given a
finite group H with d(H) < g and a simple factor A of Q[H], there is a corresponding
arithmetic group Qg 4 which is a virtual quotient of Mod(%,). It is therefore of
interest to understand what kinds of algebras with involution (A, 7) are obtained in
this way. This seems to be an open problem in general.

We start with some basic properties of the pairs (A4, 7). Recall that A is isomor-
phic to Mat,, (D) for some integer m and some division algebra D with a number
field L as center. Recall from Lemma 4.2 that L must be a subfield of a cyclotomic
field. This is equivalent to L being an abelian extension of Q. Recall, moreover, from
Proposition 4.3 that L is totally real if and only if 7 is of first kind and L is totally
imaginary if and only if 7 is of second kind.
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We will not say much about the involution 7. However, in the case where 7 is of
first kind, the division algebra D is considerably restricted. The following proposition
is essentially the Brauer—Speiser Theorem, and the proof we give is basically that
given by Fields in [F71]. Recall that the degree d of a division algebra D is the
integer satisfying d> = dimy, (D) where L is the center of D.

ProproOsITION 9.1. If A = Mat,,(D) has an involution of the first kind, then the
degree of D is at most 2, i.e. D is the field L or a quaternion algebra over L.

Proof. If T is an involution of the first kind, then 7 is an isomorphism A = A°
as L-algebras. Thus A ®; A = A ®p A? = Mat, (L) where n = dimz,(A) [FD93,
Proposition 3.12]. Thus, the class defined by A in the Brauer group of L has order 1
or 2 (see below for the definition of the Brauer group and [FD93] for more details).
For number fields L, the exponent of Mat,, (D) in the Brauer group of L is equal to
the degree of D [R75, Theorem 32.19]. 0

Let us consider, now, the simpler question of which algebras A appear as simple
components of Q[H]| or what division algebras D appear in such an A = Mat,, (D)
regardless of m. Notice that, by using Sym(¢ + 1) and its standard representation,
given any algebra A = Mat,, (D) which is a simple part of Q[H], we can also obtain
Matg,, (D) as a simple part of Q[H x Sym(¢ + 1)]. One can show that this increases
the requisite number of generators of the finite group by at most 1 except when H is
trivial. For D = L a field, the algebra Mat,, (D) is a simple component of Q[H| for
some H precisely when L is a subfield of a cyclotomic field (see e.g. [M78, Theorem
3.2]). This leads to the proof of Theorem 1.3.

Proof of Theorem 1.3. We use Theorem 1.8 and follow a similar program as for
Theorem 1.2. From the above discussion, it follows that for some s; € N, there is
a finite group H such that Mats, (L) is a simple component of Q[H]. Consequently,
using arguments similar to those for Theorem 1.2, Mat,,s, (L) is a simple part of
Q[H x Sym(m + 1)]. Let N = d(H x Sym(m + 1)) + 1.

Suppose L is a totally real field. By Proposition 4.3, 7 is of first kind and K = L.
By the same proposition, since Maty,s, (L) @ gk R = Mat,s, (K) @ x R = Mat,s, (R),
the involution 7 is of orthogonal type. Arguing as for example (b) of Theorem 1.2,
we find a virtual epimorphism of Mod(%,) onto Sp(2msr(g — 1), O) where O is the
ring of integers in L.

Suppose L is a totally imaginary field. By Proposition 4.3, 7 is of second kind. Ar-
guing as for example (c) of Theorem 1.2, we find a virtual epimorphism of Mod (%)
onto SU(msr(g —1),msr(g — 1), 0) where O is the ring of integers in L. 0

If we ask only what division algebras D appear regardless of m, then we can
appeal to results on the Schur subgroup, S(L), of the Brauer group, B(L), for a
finite abelian extension L of Q. The elements of the Brauer group are equivalence
classes of central simple L-algebras where A; and Ay are equivalent if they are
isomorphic, respectively, to Mat,,, (D) and Mat,,, (D) for some division algebra D.
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The group operation is ®,. The Schur group consists of those classes [A] where A is
a simple component of some L[H]. In the case where L is a finite abelian extension
of @, the Schur subgroup is also the set of those classes [A] where A is a simple
component of some Q[H] (This seems to be well-known among experts, but is also
a consequence of the stronger [M78, Theorem 3.2]).

We mention some of the easier-to-state theorems in the literature. One basic
question that can be answered is what possible degree d of a division algebra D is
possible. Le. for what d is dimy (D) = d? for some division algebra D in the Schur
group of L? It follows from [BS72] that, for L containing a primitive dth root of unity,
there are infinitely many elements [D] in S(L) where D has degree d. In particular,
in combination with our theorems, this implies that for each of these infinitely many
division algebras D, some m and sufficiently large g (depending on D), there is a
virtual epimorphism of Mod(X,) onto the arithmetic group G'(9), i.e. the elements
of reduced norm 1 in Autp (9?92, (—, —)) where O is an order in Mat,, (D).

In the opposite direction, a result due to Schacher and Fein (independently)
tells us that infinitely many division algebras D are unattainable regardless of m
[S72]. In the special case of L = Q, it has been shown that S(Q) and B(Q) are
equal when restricting to classes [D] where the degree of D is 2 [B71,F71]. Some
other papers characterize S(L) for certain subclasses of fields in cyclotomic fields
(e.g.[BS72,J75]). We refrain from going into further detail and refer the interested
reader to the literature.
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